Suppr超能文献

粗糙脉孢菌中钾离子转运体的协调作用:TRK1含量稀少且组成型表达,而HAK1含量丰富且受到高度调控。

Coordination of K+ transporters in neurospora: TRK1 is scarce and constitutive, while HAK1 is abundant and highly regulated.

作者信息

Rivetta Alberto, Allen Kenneth E, Slayman Carolyn W, Slayman Clifford L

机构信息

Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.

出版信息

Eukaryot Cell. 2013 May;12(5):684-96. doi: 10.1128/EC.00017-13. Epub 2013 Mar 8.

Abstract

Fungi, plants, and bacteria accumulate potassium via two distinct molecular machines not directly coupled to ATP hydrolysis. The first, designated TRK, HKT, or KTR, has eight transmembrane helices and is folded like known potassium channels, while the second, designated HAK, KT, or KUP, has 12 transmembrane helices and resembles MFS class proteins. One of each type functions in the model organism Neurospora crassa, where both are readily accessible for biochemical, genetic, and electrophysiological characterization. We have now determined the operating balance between Trk1p and Hak1p under several important conditions, including potassium limitation and carbon starvation. Growth measurements, epitope tagging, and quantitative Western blotting have shown the gene HAK1 to be much more highly regulated than is TRK1. This conclusion follows from three experimental results: (i) Trk1p is expressed constitutively but at low levels, and it is barely sensitive to extracellular [K(+)] and/or the coexpression of HAK1; (ii) Hak1p is abundant but is markedly depressed by elevated extracellular concentrations of K(+) and by coexpression of TRK1; and (iii) Carbon starvation slowly enhances Hak1p expression and depresses Trk1p expression, yielding steady-state Hak1p:Trk1p ratios of ∼500:1, viz., 10- to 50-fold larger than that in K(+)- and carbon-replete cells. Additionally, it appears that both potassium transporters can adjust kinetically to sustained low-K(+) stress by means of progressively increasing transporter affinity for extracellular K(+). The underlying observations are (iv) that K(+) influx via Trk1p remains nearly constant at ∼9 mM/h when extracellular K(+) is progressively depleted below 0.05 mM and (v) that K(+) influx via Hak1p remains at ∼3 mM/h when extracellular K(+) is depleted below 0.1 mM.

摘要

真菌、植物和细菌通过两种与ATP水解不直接偶联的不同分子机制积累钾离子。第一种称为TRK、HKT或KTR,有八个跨膜螺旋,其折叠方式类似于已知的钾离子通道;第二种称为HAK、KT或KUP,有十二个跨膜螺旋,类似于主要 facilitator 超家族(MFS)类蛋白。每种类型中的一个在模式生物粗糙脉孢菌中发挥作用,在那里它们都易于进行生化、遗传和电生理特性分析。我们现在已经确定了在几种重要条件下,包括钾离子限制和碳饥饿条件下,Trk1p和Hak1p之间的运作平衡。生长测量、表位标记和定量蛋白质免疫印迹表明,与TRK1相比,基因HAK1受到的调控程度要高得多。这一结论来自三个实验结果:(i)Trk1p组成性表达但水平较低,并且它对细胞外[K⁺]和/或HAK1的共表达几乎不敏感;(ii)Hak1p含量丰富,但细胞外K⁺浓度升高以及TRK1的共表达会使其显著降低;(iii)碳饥饿会缓慢增强Hak1p的表达并降低Trk1p的表达,产生的稳态Hak1p:Trk1p比率约为500:1,即比钾离子和碳充足的细胞中的比率大10至50倍。此外,似乎两种钾离子转运蛋白都可以通过逐渐增加转运蛋白对细胞外K⁺的亲和力,在动力学上适应持续的低钾胁迫。相关的观察结果是:(iv)当细胞外K⁺逐渐耗尽至低于0.05 mM时,通过Trk1p的K⁺流入量几乎保持恒定,约为9 mM/h;(v)当细胞外K⁺耗尽至低于0.1 mM时,通过Hak1p的K⁺流入量保持在约3 mM/h。

相似文献

3
Individual functions of the HAK and TRK potassium transporters of Schwanniomyces occidentalis.
Mol Microbiol. 2000 Aug;37(3):671-9. doi: 10.1046/j.1365-2958.2000.02040.x.
5
Plant HAK/KUP/KT K transporters: Function and regulation.
Semin Cell Dev Biol. 2018 Feb;74:133-141. doi: 10.1016/j.semcdb.2017.07.009. Epub 2017 Jul 13.
8
Regulation and activity of CaTrk1, CaAcu1 and CaHak1, the three plasma membrane potassium transporters in Candida albicans.
Biochim Biophys Acta Biomembr. 2021 Jan 1;1863(1):183486. doi: 10.1016/j.bbamem.2020.183486. Epub 2020 Oct 15.

引用本文的文献

1
Recent Advances in Genome-wide Analyses of Plant Potassium Transporter Families.
Curr Genomics. 2021 Oct 18;22(3):164-180. doi: 10.2174/1389202922666210225083634.
4
6
The Role of Soil Fungi in K Plant Nutrition.
Int J Mol Sci. 2019 Jun 28;20(13):3169. doi: 10.3390/ijms20133169.
7
Yeast Fex1p Is a Constitutively Expressed Fluoride Channel with Functional Asymmetry of Its Two Homologous Domains.
J Biol Chem. 2015 Aug 7;290(32):19874-87. doi: 10.1074/jbc.M115.651976. Epub 2015 Jun 8.

本文引用的文献

3
Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling.
PLoS Comput Biol. 2012;8(6):e1002548. doi: 10.1371/journal.pcbi.1002548. Epub 2012 Jun 21.
4
Lactose permease and the alternating access mechanism.
Biochemistry. 2011 Nov 15;50(45):9684-93. doi: 10.1021/bi2014294. Epub 2011 Oct 19.
5
Global analysis of serine-threonine protein kinase genes in Neurospora crassa.
Eukaryot Cell. 2011 Nov;10(11):1553-64. doi: 10.1128/EC.05140-11. Epub 2011 Sep 30.
6
Potassium and sodium uptake systems in fungi. The transporter diversity of Magnaporthe oryzae.
Fungal Genet Biol. 2011 Aug;48(8):812-22. doi: 10.1016/j.fgb.2011.03.002. Epub 2011 Mar 22.
7
Crystal structure of a potassium ion transporter, TrkH.
Nature. 2011 Mar 17;471(7338):336-40. doi: 10.1038/nature09731. Epub 2011 Feb 13.
8
Exploring the bZIP transcription factor regulatory network in Neurospora crassa.
Microbiology (Reading). 2011 Mar;157(Pt 3):747-759. doi: 10.1099/mic.0.045468-0. Epub 2010 Nov 16.
9
Alkali metal cation transport and homeostasis in yeasts.
Microbiol Mol Biol Rev. 2010 Mar;74(1):95-120. doi: 10.1128/MMBR.00042-09.
10
Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22157-62. doi: 10.1073/pnas.0906810106. Epub 2009 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验