Suppr超能文献

利用 α-稳定分布对 MRI 中白质和灰质分布进行参数化。

Parameterization of the distribution of white and grey matter in MRI using the α-stable distribution.

机构信息

Department of Signal Theory, Networking and Communications, University of Granada, Spain.

出版信息

Comput Biol Med. 2013 Jun;43(5):559-67. doi: 10.1016/j.compbiomed.2013.01.003. Epub 2013 Feb 26.

Abstract

This work presents a study of the distribution of the grey matter (GM) and white matter (WM) in brain magnetic resonance imaging (MRI). The distribution of GM and WM is characterized using a mixture of α-stable distributions. A Bayesian α-stable mixture model for histogram data is presented and unknown parameters are sampled using the Metropolis-Hastings algorithm. The proposed methodology is tested in 18 real images from the MRI brain segmentation repository. The GM and WM distributions are accurately estimated. The α-stable distribution mixture model presented in this paper can be used as previous step in more complex MRI segmentation procedures using spatial information. Furthermore, due to the fact that the α-stable distribution is a generalization of the Gaussian distribution, the proposed methodology can be applied instead of the Gaussian mixture model, which is widely used in segmentation of brain MRI in the literature.

摘要

本研究探讨了脑磁共振成像(MRI)中灰质(GM)和白质(WM)的分布。使用α-稳定分布混合模型来描述 GM 和 WM 的分布。提出了一种用于直方图数据的贝叶斯α-稳定混合模型,并使用 Metropolis-Hastings 算法对未知参数进行采样。该方法在来自 MRI 脑分割库的 18 个真实图像上进行了测试。准确估计了 GM 和 WM 的分布。本文提出的α-稳定分布混合模型可作为使用空间信息的更复杂 MRI 分割过程的前置步骤。此外,由于α-稳定分布是高斯分布的推广,因此本文提出的方法可以替代在文献中广泛用于脑 MRI 分割的高斯混合模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验