Suppr超能文献

通过共底物补偿维持线粒体氧稳态。

Maintenance of mitochondrial oxygen homeostasis by cosubstrate compensation.

机构信息

Department of Systems Biology, Harvard Medical School, Boston, MA, USA.

出版信息

Biophys J. 2013 Mar 19;104(6):1338-48. doi: 10.1016/j.bpj.2013.01.030.

Abstract

Mitochondria maintain a constant rate of aerobic respiration over a wide range of oxygen levels. However, the control strategies underlying oxygen homeostasis are still unclear. Using mathematical modeling, we found that the mitochondrial electron transport chain (ETC) responds to oxygen level changes by undergoing compensatory changes in reduced electron carrier levels. This emergent behavior, which we named cosubstrate compensation (CSC), enables the ETC to maintain homeostasis over a wide of oxygen levels. When performing CSC, our ETC models recapitulated a classic scaling relationship discovered by Chance [Chance B (1965) J. Gen. Physiol. 49:163-165] relating the extent of oxygen homeostasis to the kinetics of mitochondrial electron transport. Analysis of an in silico mitochondrial respiratory system further showed evidence that CSC constitutes the dominant control strategy for mitochondrial oxygen homeostasis during active respiration. Our findings indicate that CSC constitutes a robust control strategy for homeostasis and adaptation in cellular biochemical networks.

摘要

线粒体在广泛的氧气水平范围内保持恒定的需氧呼吸速率。然而,氧气动态平衡的控制策略仍不清楚。我们通过数学建模发现,线粒体电子传递链(ETC)通过降低还原电子载体水平来应对氧气水平变化,从而发生代偿性变化。这种新出现的行为,我们称之为辅助底物补偿(CSC),使 ETC 能够在广泛的氧气水平下维持动态平衡。在进行 CSC 时,我们的 ETC 模型再现了 Chance 发现的经典缩放关系[Chance B(1965)J. Gen. Physiol. 49:163-165],该关系将氧气动态平衡的程度与线粒体电子传递的动力学联系起来。对计算机模拟的线粒体呼吸系统的分析进一步表明,CSC 是主动呼吸期间线粒体氧气动态平衡的主要控制策略。我们的研究结果表明,CSC 是细胞生化网络中动态平衡和适应的稳健控制策略。

相似文献

1
Maintenance of mitochondrial oxygen homeostasis by cosubstrate compensation.
Biophys J. 2013 Mar 19;104(6):1338-48. doi: 10.1016/j.bpj.2013.01.030.
2
Oxygen conformance of cellular respiration. A perspective of mitochondrial physiology.
Adv Exp Med Biol. 2003;543:39-55. doi: 10.1007/978-1-4419-8997-0_4.
3
Mitochondrial Respiration and Oxygen Tension.
Methods Mol Biol. 2017;1670:97-113. doi: 10.1007/978-1-4939-7292-0_11.
4
Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1.
Biochem J. 2007 Jul 1;405(1):1-9. doi: 10.1042/BJ20070389.
5
Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption.
Aquat Toxicol. 2019 Sep;214:105264. doi: 10.1016/j.aquatox.2019.105264. Epub 2019 Jul 25.
6
Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism.
PLoS Comput Biol. 2006 Sep 15;2(9):e107. doi: 10.1371/journal.pcbi.0020107. Epub 2006 Jul 10.
7
8
A mathematical model of electron transfer within the mitochondrial respiratory cytochromes.
J Theor Biol. 2001 Nov 21;213(2):197-207. doi: 10.1006/jtbi.2001.2411.
9
A mathematical model to study short-term regulation of mitochondrial energy transduction.
Biochim Biophys Acta. 1985 Nov 27;810(2):252-68. doi: 10.1016/0005-2728(85)90140-9.
10
Electron transfer kinetics of the mitochondrial outer membrane protein mitoNEET.
Free Radic Biol Med. 2018 Jun;121:98-104. doi: 10.1016/j.freeradbiomed.2018.04.569. Epub 2018 Apr 25.

引用本文的文献

2
The Unfolded Protein Response: A Double-Edged Sword for Brain Health.
Antioxidants (Basel). 2023 Aug 21;12(8):1648. doi: 10.3390/antiox12081648.
4
The Role of the Hypoxia-Related Unfolded Protein Response (UPR) in the Tumor Microenvironment.
Cancers (Basel). 2022 Oct 5;14(19):4870. doi: 10.3390/cancers14194870.
5
Mitochondrial dysfunction, UPR signaling, and targeted therapy in metastasis tumor.
Cell Biosci. 2021 Oct 30;11(1):186. doi: 10.1186/s13578-021-00696-0.
7
Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia.
Cell Mol Biol Lett. 2020 Mar 13;25:18. doi: 10.1186/s11658-020-00212-1. eCollection 2020.
9
Hypoxia and hyperbaric oxygen therapy: a review.
Int J Gen Med. 2018 Nov 20;11:431-442. doi: 10.2147/IJGM.S172460. eCollection 2018.
10
Wound redox gradients revisited.
Semin Cell Dev Biol. 2018 Aug;80:13-16. doi: 10.1016/j.semcdb.2017.07.038. Epub 2017 Jul 24.

本文引用的文献

1
Explaining the enigmatic K(M) for oxygen in cytochrome c oxidase: a kinetic model.
Biochim Biophys Acta. 2011 Mar;1807(3):348-58. doi: 10.1016/j.bbabio.2010.12.015. Epub 2011 Jan 3.
2
Scaling of morphogen gradients by an expansion-repression integral feedback control.
Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6924-9. doi: 10.1073/pnas.0912734107. Epub 2010 Mar 30.
3
Structural sources of robustness in biochemical reaction networks.
Science. 2010 Mar 12;327(5971):1389-91. doi: 10.1126/science.1183372.
4
Defining network topologies that can achieve biochemical adaptation.
Cell. 2009 Aug 21;138(4):760-73. doi: 10.1016/j.cell.2009.06.013.
5
Understanding the Warburg effect: the metabolic requirements of cell proliferation.
Science. 2009 May 22;324(5930):1029-33. doi: 10.1126/science.1160809.
6
Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts.
J Physiol. 2008 Sep 1;586(17):4193-208. doi: 10.1113/jphysiol.2008.154732. Epub 2008 Jul 10.
7
Spatial patterning of metabolism by mitochondria, oxygen, and energy sinks in a model cytoplasm.
Curr Biol. 2008 Apr 22;18(8):586-91. doi: 10.1016/j.cub.2008.03.038. Epub 2008 Apr 10.
8
The role of oxygen availability in embryonic development and stem cell function.
Nat Rev Mol Cell Biol. 2008 Apr;9(4):285-96. doi: 10.1038/nrm2354. Epub 2008 Feb 20.
9
Oxygen sensors in context.
Biochim Biophys Acta. 2008 Jan;1777(1):1-14. doi: 10.1016/j.bbabio.2007.10.010. Epub 2007 Nov 1.
10
AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy.
Nat Rev Mol Cell Biol. 2007 Oct;8(10):774-85. doi: 10.1038/nrm2249.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验