Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
Biophys J. 2013 Mar 19;104(6):1338-48. doi: 10.1016/j.bpj.2013.01.030.
Mitochondria maintain a constant rate of aerobic respiration over a wide range of oxygen levels. However, the control strategies underlying oxygen homeostasis are still unclear. Using mathematical modeling, we found that the mitochondrial electron transport chain (ETC) responds to oxygen level changes by undergoing compensatory changes in reduced electron carrier levels. This emergent behavior, which we named cosubstrate compensation (CSC), enables the ETC to maintain homeostasis over a wide of oxygen levels. When performing CSC, our ETC models recapitulated a classic scaling relationship discovered by Chance [Chance B (1965) J. Gen. Physiol. 49:163-165] relating the extent of oxygen homeostasis to the kinetics of mitochondrial electron transport. Analysis of an in silico mitochondrial respiratory system further showed evidence that CSC constitutes the dominant control strategy for mitochondrial oxygen homeostasis during active respiration. Our findings indicate that CSC constitutes a robust control strategy for homeostasis and adaptation in cellular biochemical networks.
线粒体在广泛的氧气水平范围内保持恒定的需氧呼吸速率。然而,氧气动态平衡的控制策略仍不清楚。我们通过数学建模发现,线粒体电子传递链(ETC)通过降低还原电子载体水平来应对氧气水平变化,从而发生代偿性变化。这种新出现的行为,我们称之为辅助底物补偿(CSC),使 ETC 能够在广泛的氧气水平下维持动态平衡。在进行 CSC 时,我们的 ETC 模型再现了 Chance 发现的经典缩放关系[Chance B(1965)J. Gen. Physiol. 49:163-165],该关系将氧气动态平衡的程度与线粒体电子传递的动力学联系起来。对计算机模拟的线粒体呼吸系统的分析进一步表明,CSC 是主动呼吸期间线粒体氧气动态平衡的主要控制策略。我们的研究结果表明,CSC 是细胞生化网络中动态平衡和适应的稳健控制策略。