Suppr超能文献

通过共底物补偿维持线粒体氧稳态。

Maintenance of mitochondrial oxygen homeostasis by cosubstrate compensation.

机构信息

Department of Systems Biology, Harvard Medical School, Boston, MA, USA.

出版信息

Biophys J. 2013 Mar 19;104(6):1338-48. doi: 10.1016/j.bpj.2013.01.030.

Abstract

Mitochondria maintain a constant rate of aerobic respiration over a wide range of oxygen levels. However, the control strategies underlying oxygen homeostasis are still unclear. Using mathematical modeling, we found that the mitochondrial electron transport chain (ETC) responds to oxygen level changes by undergoing compensatory changes in reduced electron carrier levels. This emergent behavior, which we named cosubstrate compensation (CSC), enables the ETC to maintain homeostasis over a wide of oxygen levels. When performing CSC, our ETC models recapitulated a classic scaling relationship discovered by Chance [Chance B (1965) J. Gen. Physiol. 49:163-165] relating the extent of oxygen homeostasis to the kinetics of mitochondrial electron transport. Analysis of an in silico mitochondrial respiratory system further showed evidence that CSC constitutes the dominant control strategy for mitochondrial oxygen homeostasis during active respiration. Our findings indicate that CSC constitutes a robust control strategy for homeostasis and adaptation in cellular biochemical networks.

摘要

线粒体在广泛的氧气水平范围内保持恒定的需氧呼吸速率。然而,氧气动态平衡的控制策略仍不清楚。我们通过数学建模发现,线粒体电子传递链(ETC)通过降低还原电子载体水平来应对氧气水平变化,从而发生代偿性变化。这种新出现的行为,我们称之为辅助底物补偿(CSC),使 ETC 能够在广泛的氧气水平下维持动态平衡。在进行 CSC 时,我们的 ETC 模型再现了 Chance 发现的经典缩放关系[Chance B(1965)J. Gen. Physiol. 49:163-165],该关系将氧气动态平衡的程度与线粒体电子传递的动力学联系起来。对计算机模拟的线粒体呼吸系统的分析进一步表明,CSC 是主动呼吸期间线粒体氧气动态平衡的主要控制策略。我们的研究结果表明,CSC 是细胞生化网络中动态平衡和适应的稳健控制策略。

相似文献

3
Mitochondrial Respiration and Oxygen Tension.线粒体呼吸与氧张力
Methods Mol Biol. 2017;1670:97-113. doi: 10.1007/978-1-4939-7292-0_11.
9
A mathematical model to study short-term regulation of mitochondrial energy transduction.
Biochim Biophys Acta. 1985 Nov 27;810(2):252-68. doi: 10.1016/0005-2728(85)90140-9.
10
Electron transfer kinetics of the mitochondrial outer membrane protein mitoNEET.线粒体外膜蛋白 mitoNEET 的电子转移动力学。
Free Radic Biol Med. 2018 Jun;121:98-104. doi: 10.1016/j.freeradbiomed.2018.04.569. Epub 2018 Apr 25.

引用本文的文献

9
Hypoxia and hyperbaric oxygen therapy: a review.缺氧与高压氧治疗:综述
Int J Gen Med. 2018 Nov 20;11:431-442. doi: 10.2147/IJGM.S172460. eCollection 2018.
10
Wound redox gradients revisited.重新审视创面氧化还原梯度。
Semin Cell Dev Biol. 2018 Aug;80:13-16. doi: 10.1016/j.semcdb.2017.07.038. Epub 2017 Jul 24.

本文引用的文献

1
Explaining the enigmatic K(M) for oxygen in cytochrome c oxidase: a kinetic model.
Biochim Biophys Acta. 2011 Mar;1807(3):348-58. doi: 10.1016/j.bbabio.2010.12.015. Epub 2011 Jan 3.
2
Scaling of morphogen gradients by an expansion-repression integral feedback control.形态发生梯度的缩放通过扩展-抑制积分反馈控制。
Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6924-9. doi: 10.1073/pnas.0912734107. Epub 2010 Mar 30.
9
Oxygen sensors in context.上下文环境中的氧传感器。
Biochim Biophys Acta. 2008 Jan;1777(1):1-14. doi: 10.1016/j.bbabio.2007.10.010. Epub 2007 Nov 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验