Suppr超能文献

不同谱域 OCT 扫描方案诊断青光眼前期的比较。

Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma.

机构信息

Hamilton Glaucoma Center, Department of Ophthalmology, University of California-San Diego, La Jolla, CA, USA.

出版信息

Invest Ophthalmol Vis Sci. 2013 May 13;54(5):3417-25. doi: 10.1167/iovs.13-11676.

Abstract

PURPOSE

To compare the ability of spectral-domain optical coherence tomography (SDOCT) retinal nerve fiber layer (RNFL), optic nerve head (ONH), and macular measurements to detect preperimetric glaucomatous damage.

METHODS

The study included 142 eyes from 91 patients suspected of having the disease based on the appearance of the optic disc. All eyes had normal visual fields before the imaging session. Forty-eight eyes with progressive glaucomatous damage were included in the preperimetric glaucoma group. Ninety-four eyes without any evidence of progressive glaucomatous damage and followed untreated for 12.8 ± 3.6 years were used as controls. Areas under the receiver operating characteristic curves (AUC) were calculated to summarize diagnostic accuracies of the parameters.

RESULTS

The three RNFL parameters with the largest AUCs were average RNFL thickness (0.89 ± 0.03), inferior hemisphere average thickness (0.87 ± 0.03), and inferior quadrant average thickness (0.85 ± 0.03). The three ONH parameters with the largest AUCs were vertical cup-to-disc ratio (0.74 ± 0.04), rim area (0.72 ± 0.05), and rim volume (0.72 ± 0.05). The three macular parameters with the largest AUCs were GCC average thickness (0.79 ± 0.04), GCC inferior thickness (0.79 ± 0.05), and GCC superior thickness (0.76 ± 0.05). Average RNFL thickness performed better than vertical cup-to-disc ratio (0.89 vs. 0.74; P = 0.007) and GCC average thickness (0.89 vs. 0.79; P = 0.015).

CONCLUSIONS

SDOCT RNFL measurements performed better than ONH and macular measurements for detecting preperimetric glaucomatous damage in a cohort of glaucoma suspects. (ClinicalTrials.gov number, NCT00221897.).

摘要

目的

比较频域光相干断层扫描(SD-OCT)视网膜神经纤维层(RNFL)、视神经盘(ONH)和黄斑测量值检测前期青光眼损害的能力。

方法

本研究纳入了 91 例疑似视神经盘形态异常的患者的 142 只眼。所有眼在成像前均有正常的视野。将 48 只进展性青光眼损害眼纳入前期青光眼组。94 只无任何进展性青光眼损害证据且未经治疗随访 12.8±3.6 年的眼作为对照组。计算受试者工作特征曲线(ROC)下面积(AUC)以总结参数的诊断准确性。

结果

AUC 最大的三个 RNFL 参数分别为平均 RNFL 厚度(0.89±0.03)、下半球平均厚度(0.87±0.03)和下象限平均厚度(0.85±0.03)。AUC 最大的三个 ONH 参数分别为垂直杯盘比(0.74±0.04)、盘沿面积(0.72±0.05)和盘沿体积(0.72±0.05)。AUC 最大的三个黄斑参数分别为 GCC 平均厚度(0.79±0.04)、GCC 下侧厚度(0.79±0.05)和 GCC 上侧厚度(0.76±0.05)。平均 RNFL 厚度优于垂直杯盘比(0.89 与 0.74,P=0.007)和 GCC 平均厚度(0.89 与 0.79,P=0.015)。

结论

在一组青光眼疑似患者中,SD-OCT 视网膜神经纤维层测量对检测前期青光眼损害的能力优于视神经盘和黄斑测量。(临床试验注册号:NCT00221897.)

相似文献

1
Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma.
Invest Ophthalmol Vis Sci. 2013 May 13;54(5):3417-25. doi: 10.1167/iovs.13-11676.
2
Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography.
Ophthalmology. 2012 Nov;119(11):2261-9. doi: 10.1016/j.ophtha.2012.06.009. Epub 2012 Aug 9.
6
Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes.
Ophthalmology. 2011 Feb;118(2):241-8.e1. doi: 10.1016/j.ophtha.2010.06.036. Epub 2010 Oct 28.
8
Evaluation of optic nerve head and retinal nerve fiber layer in early and advance glaucoma using frequency-domain optical coherence tomography.
Graefes Arch Clin Exp Ophthalmol. 2010 Mar;248(3):429-34. doi: 10.1007/s00417-009-1241-0. Epub 2009 Nov 25.

引用本文的文献

1
Differential Impact of Retinal Lesions on Visual Responses of LGN X and Y Cells.
J Neurosci. 2025 Jun 4;45(23):e0436252025. doi: 10.1523/JNEUROSCI.0436-25.2025.
2
Percentage macular ganglion cell complex and peripapillary retinal nerve fiber layer loss in different stages of glaucoma.
Indian J Ophthalmol. 2025 Mar 1;73(Suppl 2):S308-S312. doi: 10.4103/IJO.IJO_3238_23. Epub 2025 Feb 21.
3
Clinical Applications of Artificial Intelligence in Glaucoma.
J Ophthalmic Vis Res. 2023 Feb 21;18(1):97-112. doi: 10.18502/jovr.v18i1.12730. eCollection 2023 Jan-Mar.
4
Ganglion Cell Complex Analysis: Correlations with Retinal Nerve Fiber Layer on Optical Coherence Tomography.
Diagnostics (Basel). 2023 Jan 11;13(2):266. doi: 10.3390/diagnostics13020266.
5
Quantifying biomarkers of axonal degeneration in early glaucoma to find the disc at risk.
Sci Rep. 2022 Jun 7;12(1):9366. doi: 10.1038/s41598-022-12036-4.
7
Macula and optic disk features in methamphetamine and crystal methamphetamine addicts using optical coherence tomography.
Int Ophthalmol. 2022 Jul;42(7):2055-2062. doi: 10.1007/s10792-021-02200-6. Epub 2022 Feb 21.
8
Infrared- and white-light retinal sensitivity in glaucomatous neuropathy.
Sci Rep. 2022 Feb 4;12(1):1961. doi: 10.1038/s41598-022-05718-6.
9
A Case for the Use of Artificial Intelligence in Glaucoma Assessment.
Ophthalmol Glaucoma. 2022 May-Jun;5(3):e3-e13. doi: 10.1016/j.ogla.2021.12.003. Epub 2021 Dec 22.
10
On the protective role of the blood vessels in glaucomatous damage: A transversal study.
J Optom. 2023 Jan-Mar;16(1):81-87. doi: 10.1016/j.optom.2021.10.003. Epub 2021 Dec 20.

本文引用的文献

2
Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography.
Ophthalmology. 2012 Nov;119(11):2261-9. doi: 10.1016/j.ophtha.2012.06.009. Epub 2012 Aug 9.
3
Effect of spectrum bias on the diagnostic accuracy of spectral-domain optical coherence tomography in glaucoma.
Invest Ophthalmol Vis Sci. 2012 Feb 29;53(2):1058-65. doi: 10.1167/iovs.11-8463.
6
Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma.
Ophthalmology. 2011 Jul;118(7):1334-9. doi: 10.1016/j.ophtha.2010.11.029. Epub 2011 Mar 5.
7
Agreement and accuracy of non-expert ophthalmologists in assessing glaucomatous changes in serial stereo optic disc photographs.
Ophthalmology. 2011 Apr;118(4):742-6. doi: 10.1016/j.ophtha.2010.08.019. Epub 2010 Nov 4.
9
Comparative study of retinal nerve fibre layer measurement by RTVue OCT and GDx VCC.
Br J Ophthalmol. 2011 Apr;95(4):509-13. doi: 10.1136/bjo.2009.163493. Epub 2010 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验