Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
Mol Cell Biol. 2013 Jun;33(11):2327-38. doi: 10.1128/MCB.01421-12. Epub 2013 Apr 1.
Circadian disruption has deleterious effects on metabolism. Global deletion of Bmal1, a core clock gene, results in β-cell dysfunction and diabetes. However, it is unknown if this is due to loss of cell-autonomous function of Bmal1 in β cells. To address this, we generated mice with β-cell clock disruption by deleting Bmal1 in β cells (β-Bmal1(-/-)). β-Bmal1(-/-) mice develop diabetes due to loss of glucose-stimulated insulin secretion (GSIS). This loss of GSIS is due to the accumulation of reactive oxygen species (ROS) and consequent mitochondrial uncoupling, as it is fully rescued by scavenging of the ROS or by inhibition of uncoupling protein 2. The expression of the master antioxidant regulatory factor Nrf2 (nuclear factor erythroid 2-related factor 2) and its targets, Sesn2, Prdx3, Gclc, and Gclm, was decreased in β-Bmal1(-/-) islets, which may contribute to the observed increase in ROS accumulation. In addition, by chromatin immunoprecipitation experiments, we show that Nrf2 is a direct transcriptional target of Bmal1. Interestingly, simulation of shift work-induced circadian misalignment in mice recapitulates many of the defects seen in Bmal1-deficient islets. Thus, the cell-autonomous function of Bmal1 is required for normal β-cell function by mitigating oxidative stress and serves to preserve β-cell function in the face of circadian misalignment.
昼夜节律紊乱对代谢有有害影响。核心时钟基因 Bmal1 的全局缺失会导致β细胞功能障碍和糖尿病。然而,目前尚不清楚这是否是由于β细胞中 Bmal1 的细胞自主功能丧失所致。为了解决这个问题,我们通过在β细胞中删除 Bmal1 (β-Bmal1(-/-))来产生具有β细胞时钟破坏的小鼠。由于葡萄糖刺激的胰岛素分泌(GSIS)丧失,β-Bmal1(-/-)小鼠会发展为糖尿病。这种 GSIS 的丧失是由于活性氧(ROS)的积累和随后的线粒体解偶联所致,因为通过清除 ROS 或抑制解偶联蛋白 2 可以完全挽救。在β-Bmal1(-/-)胰岛中,主抗氧化调节因子 Nrf2(红细胞系 2 相关因子 2)及其靶标 Sesn2、Prdx3、Gclc 和 Gclm 的表达减少,这可能导致观察到的 ROS 积累增加。此外,通过染色质免疫沉淀实验,我们表明 Nrf2 是 Bmal1 的直接转录靶标。有趣的是,模拟轮班工作引起的昼夜节律失调在小鼠中重现了 Bmal1 缺陷胰岛中所见的许多缺陷。因此,Bmal1 的细胞自主功能通过减轻氧化应激来维持正常的β细胞功能,并在昼夜节律失调时有助于维持β细胞功能。