Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America.
PLoS Genet. 2013 Mar;9(3):e1003366. doi: 10.1371/journal.pgen.1003366. Epub 2013 Mar 21.
Genome rearrangements are associated with eukaryotic evolutionary processes ranging from tumorigenesis to speciation. Rearrangements are especially common following interspecific hybridization, and some of these could be expected to have strong selective value. To test this expectation we created de novo interspecific yeast hybrids between two diverged but largely syntenic Saccharomyces species, S. cerevisiae and S. uvarum, then experimentally evolved them under continuous ammonium limitation. We discovered that a characteristic interspecific genome rearrangement arose multiple times in independently evolved populations. We uncovered nine different breakpoints, all occurring in a narrow ~1-kb region of chromosome 14, and all producing an "interspecific fusion junction" within the MEP2 gene coding sequence, such that the 5' portion derives from S. cerevisiae and the 3' portion derives from S. uvarum. In most cases the rearrangements altered both chromosomes, resulting in what can be considered to be an introgression of a several-kb region of S. uvarum into an otherwise intact S. cerevisiae chromosome 14, while the homeologous S. uvarum chromosome 14 experienced an interspecific reciprocal translocation at the same breakpoint within MEP2, yielding a chimaeric chromosome; these events result in the presence in the cell of two MEP2 fusion genes having identical breakpoints. Given that MEP2 encodes for a high-affinity ammonium permease, that MEP2 fusion genes arise repeatedly under ammonium-limitation, and that three independent evolved isolates carrying MEP2 fusion genes are each more fit than their common ancestor, the novel MEP2 fusion genes are very likely adaptive under ammonium limitation. Our results suggest that, when homoploid hybrids form, the admixture of two genomes enables swift and otherwise unavailable evolutionary innovations. Furthermore, the architecture of the MEP2 rearrangement suggests a model for rapid introgression, a phenomenon seen in numerous eukaryotic phyla, that does not require repeated backcrossing to one of the parental species.
基因组重排与真核生物的进化过程有关,范围从肿瘤发生到物种形成。重排在种间杂交后尤其常见,其中一些可能具有很强的选择价值。为了检验这一预期,我们在两个分化但大部分同源的酿酒酵母物种 S. cerevisiae 和 S. uvarum 之间创建了新的种间酵母杂种,然后在持续的铵限制下对它们进行了实验进化。我们发现,一种特征性的种间基因组重排在独立进化的群体中多次出现。我们发现了九个不同的断点,都发生在染色体 14 的一个约 1kb 的狭窄区域,所有断点都在 MEP2 基因编码序列内产生了一个“种间融合接头”,使得 5'部分来自 S. cerevisiae,3'部分来自 S. uvarum。在大多数情况下,重排改变了两条染色体,导致 S. uvarum 的数 kb 区域被导入到原本完整的 S. cerevisiae 染色体 14 中,而同源的 S. uvarum 染色体 14 在 MEP2 内的相同断点经历了种间相互易位,产生了一个嵌合染色体;这些事件导致细胞中存在两个具有相同断点的 MEP2 融合基因。鉴于 MEP2 编码高亲和力的铵通透酶,在铵限制下,MEP2 融合基因反复出现,并且携带 MEP2 融合基因的三个独立进化的分离株都比它们的共同祖先更适应,新的 MEP2 融合基因在铵限制下很可能是适应性的。我们的结果表明,当同倍体杂种形成时,两个基因组的混合使快速的、否则无法获得的进化创新成为可能。此外,MEP2 重排的结构为快速基因渗入提供了一个模型,这一现象在许多真核生物门中都有发现,而且不需要与其中一个亲本物种反复回交。