Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
Am J Epidemiol. 2013 Jun 1;177(11):1314-6. doi: 10.1093/aje/kws377. Epub 2013 Apr 4.
Epidemiologic studies often aim to estimate the odds ratio for the association between a binary exposure and a binary disease outcome. Because confounding bias is of serious concern in observational studies, investigators typically estimate the adjusted odds ratio in a multivariate logistic regression which conditions on a large number of potential confounders. It is well known that modeling error in specification of the confounders can lead to substantial bias in the adjusted odds ratio for exposure. As a remedy, Tchetgen Tchetgen et al. (Biometrika. 2010;97(1):171-180) recently developed so-called doubly robust estimators of an adjusted odds ratio by carefully combining standard logistic regression with reverse regression analysis, in which exposure is the dependent variable and both the outcome and the confounders are the independent variables. Double robustness implies that only one of the 2 modeling strategies needs to be correct in order to make valid inferences about the odds ratio parameter. In this paper, I aim to introduce this recent methodology into the epidemiologic literature by presenting a simple closed-form doubly robust estimator of the adjusted odds ratio for a binary exposure. A SAS macro (SAS Institute Inc., Cary, North Carolina) is given in an online appendix to facilitate use of the approach in routine epidemiologic practice, and a simulated data example is also provided for the purpose of illustration.
流行病学研究通常旨在估计二项暴露与二项疾病结局之间关联的优势比。由于混杂偏倚在观察性研究中是一个严重的问题,研究人员通常在多元逻辑回归中估计调整后的优势比,该回归对大量潜在混杂因素进行了条件处理。众所周知,在混杂因素的规范中存在模型错误会导致暴露调整后的优势比出现实质性偏差。作为一种补救措施,Tchetgen Tchetgen 等人(Biometrika. 2010;97(1):171-180)最近通过仔细将标准逻辑回归与反向回归分析相结合,开发了所谓的调整后优势比的双重稳健估计量,其中暴露是因变量,而结局和混杂因素都是自变量。双重稳健性意味着,只有两种建模策略中的一种需要正确,才能对优势比参数进行有效推断。在本文中,我旨在通过提出一种用于二项暴露的调整后优势比的简单闭式双重稳健估计量,将这种最新方法引入到流行病学文献中。还在在线附录中提供了一个 SAS 宏(SAS Institute Inc.,Cary,North Carolina),以方便在常规流行病学实践中使用该方法,并提供了一个模拟数据示例来说明。