Suppr超能文献

一种用于上皮组织和内皮组织工程的新型多孔支架制造技术。

A novel porous scaffold fabrication technique for epithelial and endothelial tissue engineering.

机构信息

Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, MA, 02136, USA.

出版信息

J Mater Sci Mater Med. 2013 Jul;24(7):1659-70. doi: 10.1007/s10856-013-4934-1. Epub 2013 Apr 27.

Abstract

Porous scaffolds have the ability to minimize transport barriers for both two- (2D) and three-dimensional tissue engineering. However, current porous scaffolds may be non-ideal for 2D tissues such as epithelium due to inherent fabrication-based characteristics. While 2D tissues require porosity to support molecular transport, pores must be small enough to prevent cell migration into the scaffold in order to avoid non-epithelial tissue architecture and compromised function. Though electrospun meshes are the most popular porous scaffolds used today, their heterogeneous pore size and intense topography may be poorly-suited for epithelium. Porous scaffolds produced using other methods have similar unavoidable limitations, frequently involving insufficient pore resolution and control, which make them incompatible with 2D tissues. In addition, many of these techniques require an entirely new round of process development in order to change material or pore size. Herein we describe "pore casting," a fabrication method that produces flat scaffolds with deterministic pore shape, size, and location that can be easily altered to accommodate new materials or pore dimensions. As proof-of-concept, pore-cast poly(ε-caprolactone) (PCL) scaffolds were fabricated and compared to electrospun PCL in vitro using canine kidney epithelium, human colon epithelium, and human umbilical vein endothelium. All cell types demonstrated improved morphology and function on pore-cast scaffolds, likely due to reduced topography and universally small pore size. These results suggest that pore casting is an attractive option for creating 2D tissue engineering scaffolds, especially when the application may benefit from well-controlled pore size or architecture.

摘要

多孔支架具有最小化二维(2D)和三维组织工程中两种传输障碍的能力。然而,由于固有制造特性,目前的多孔支架可能不适合 2D 组织,如上皮组织。虽然 2D 组织需要多孔性来支持分子传输,但为了防止细胞迁移到支架中以避免非上皮组织结构和功能受损,孔必须足够小。尽管静电纺丝网是当今最常用的多孔支架,但它们不均匀的孔径和强烈的形貌可能不适合上皮组织。使用其他方法生产的多孔支架也具有类似的不可避免的局限性,通常涉及不足的孔径分辨率和控制,这使得它们与 2D 组织不兼容。此外,为了改变材料或孔径,许多这些技术都需要全新的一轮工艺开发。在这里,我们描述了“孔铸造”,这是一种生产具有确定孔径、形状和位置的平板支架的制造方法,可以轻松改变以适应新材料或孔径尺寸。作为概念验证,制备了孔铸造聚己内酯(PCL)支架,并在体外使用犬肾上皮细胞、人结肠上皮细胞和人脐静脉内皮细胞对电纺 PCL 支架进行了比较。所有细胞类型在孔铸造支架上都表现出改善的形态和功能,这可能是由于减少了形貌和普遍的小孔径。这些结果表明,孔铸造是制造 2D 组织工程支架的一种有吸引力的选择,特别是当应用可能受益于良好控制的孔径或结构时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5306/4086292/ea1380963719/nihms594742f1.jpg

相似文献

6
Computer-Aided Wet-Spinning.计算机辅助湿法纺丝。
Methods Mol Biol. 2021;2147:101-110. doi: 10.1007/978-1-0716-0611-7_8.

引用本文的文献

1
The influence of physical and spatial substrate characteristics on endothelial cells.物理和空间基质特征对内皮细胞的影响。
Mater Today Bio. 2024 Apr 18;26:101060. doi: 10.1016/j.mtbio.2024.101060. eCollection 2024 Jun.
7
Tubular organ epithelialisation.管状器官上皮形成。
J Tissue Eng. 2016 Dec 19;7:2041731416683950. doi: 10.1177/2041731416683950. eCollection 2016 Jan-Dec.
8
Development of an electrospun biomimetic polyurea scaffold suitable for vascular grafting.用于血管移植的仿生聚脲电纺支架的研制。
J Biomed Mater Res B Appl Biomater. 2018 Jan;106(1):278-290. doi: 10.1002/jbm.b.33853. Epub 2017 Jan 27.

本文引用的文献

3
Engineering microscale topographies to control the cell-substrate interface.工程微形貌以控制细胞-基底界面。
Biomaterials. 2012 Jul;33(21):5230-46. doi: 10.1016/j.biomaterials.2012.03.079. Epub 2012 Apr 21.
9
Microfabrication of PDLLA scaffolds.聚丙交酯(PDLLA)支架的微加工。
J Tissue Eng Regen Med. 2011 Jul;5(7):569-77. doi: 10.1002/term.349. Epub 2010 Dec 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验