Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
Sleep. 2013 May 1;36(5):781-9. doi: 10.5665/sleep.2648.
Although currently more affordable than polysomnography, actigraphic sleep estimates have disadvantages. Brand-specific differences in data reduction impede pooling of data in large-scale cohorts and may not fully exploit movement information. Sleep estimate reliability might improve by advanced analyses of three-axial, linear accelerometry data sampled at a high rate, which is now feasible using microelectromechanical systems (MEMS). However, it might take some time before these analyses become available. To provide ongoing studies with backward compatibility while already switching from actigraphy to MEMS accelerometry, we designed and validated a method to transform accelerometry data into the traditional actigraphic movement counts, thus allowing for the use of validated algorithms to estimate sleep parameters.
Simultaneous actigraphy and MEMS-accelerometry recording.
Home, unrestrained.
Fifteen healthy adults (23-36 y, 10 males, 5 females).
None.
Actigraphic movement counts/15-sec and 50-Hz digitized MEMS-accelerometry.
Passing-Bablok regression optimized transformation of MEMS-accelerometry signals to movement counts. Kappa statistics calculated agreement between individual epochs scored as wake or sleep. Bland-Altman plots evaluated reliability of common sleep variables both between and within actigraphs and MEMS-accelerometers.
Agreement between epochs was almost perfect at the low, medium, and high threshold (kappa = 0.87 ± 0.05, 0.85 ± 0.06, and 0.83 ± 0.07). Sleep parameter agreement was better between two MEMS-accelerometers or a MEMS-accelerometer and an actigraph than between two actigraphs.
The algorithm allows for continuity of outcome parameters in ongoing actigraphy studies that consider switching to MEMS-accelerometers. Its implementation makes backward compatibility feasible, while collecting raw data that, in time, could provide better sleep estimates and promote cross-study data pooling.
尽管目前比多导睡眠图更经济实惠,但活动计睡眠估计有其缺点。数据缩减的品牌特异性差异阻碍了大规模队列数据的汇集,并且可能没有充分利用运动信息。通过对以高采样率采样的三轴线性加速度计数据进行高级分析,可以提高睡眠估计的可靠性,这在使用微机电系统(MEMS)时现在是可行的。然而,在这些分析变得可用之前,可能需要一些时间。为了在从活动计向 MEMS 加速度计转换的同时为正在进行的研究提供向后兼容性,我们设计并验证了一种将加速度计数据转换为传统活动计运动计数的方法,从而允许使用经过验证的算法来估计睡眠参数。
同时进行活动计和 MEMS 加速度计记录。
家庭,不受限制。
15 名健康成年人(23-36 岁,10 名男性,5 名女性)。
无。
活动计运动计数/15 秒和 50-Hz 数字化 MEMS 加速度计。
通过巴布洛克回归优化 MEMS 加速度计信号向运动计数的转换。计算个体时期作为清醒或睡眠评分的一致性的 Kappa 统计量。 Bland-Altman 图评估了在活动计和 MEMS 加速度计之间以及在两者内部常见睡眠变量的可靠性。
在低、中、高阈值时,时期之间的一致性几乎是完美的(kappa = 0.87 ± 0.05、0.85 ± 0.06 和 0.83 ± 0.07)。两个 MEMS 加速度计或一个 MEMS 加速度计和一个活动计之间的睡眠参数一致性优于两个活动计之间的一致性。
该算法允许正在进行的活动计研究继续使用睡眠参数,这些研究考虑切换到 MEMS 加速度计。它的实现使得向后兼容性成为可能,同时收集原始数据,这些数据随着时间的推移,可以提供更好的睡眠估计并促进跨研究数据汇集。