Suppr超能文献

基于运动想象的脑-机接口性能评估分析。

An analysis of performance evaluation for motor-imagery based BCI.

机构信息

INRIA, 2004, Route des Lucioles, F-06902 Sophia Antipolis, France.

出版信息

J Neural Eng. 2013 Jun;10(3):031001. doi: 10.1088/1741-2560/10/3/031001. Epub 2013 May 3.

Abstract

In recent years, numerous brain-computer interfaces (BCIs) based on motor-imagery have been proposed which incorporate features such as adaptive classification, error detection and correction, fusion with auxiliary signals and shared control capabilities. Due to the added complexity of such algorithms, the evaluation strategy and metrics used for analysis must be carefully chosen to accurately represent the performance of the BCI. In this article, metrics are reviewed and contrasted using both simulated examples and experimental data. Furthermore, a review of the recent literature is presented to determine how BCIs are evaluated, in particular, focusing on the relationship between how the data are used relative to the BCI subcomponent under investigation. From the analysis performed in this study, valuable guidelines are presented regarding the choice of metrics and evaluation strategy dependent upon any chosen BCI paradigm.

摘要

近年来,已经提出了许多基于运动想象的脑机接口 (BCI),它们结合了自适应分类、错误检测和纠正、与辅助信号融合以及共享控制能力等功能。由于这些算法的复杂性增加,因此必须仔细选择用于分析的评估策略和指标,以准确表示 BCI 的性能。在本文中,使用模拟示例和实验数据对指标进行了回顾和对比。此外,还对最近的文献进行了回顾,以确定如何评估 BCI,特别是重点关注相对于正在研究的 BCI 子组件,数据的使用方式与 BCI 之间的关系。通过本研究中的分析,提出了有关依赖于所选 BCI 范例的指标和评估策略选择的有价值的准则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验