Suppr超能文献

消防个人防护装备和跑步机方案对最大摄氧量的影响。

The impact of firefighter personal protective equipment and treadmill protocol on maximal oxygen uptake.

机构信息

Department of Human Science, Kyushu University, Fukuoka, Japan.

出版信息

J Occup Environ Hyg. 2013;10(7):397-407. doi: 10.1080/15459624.2013.792681.

Abstract

This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO(2max)) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO(2max) between Bruce Light, PIP Light, and PSP Light. However, VO(2max) was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO(2) in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO(2) but not VO(2max). These results suggest that firefighters' maximal performance determined from a typical VO(2max) test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE.

摘要

本研究调查了在使用两种不同跑步机协议(递增坡度协议(PIP)和递增速度协议(PSP))和三种服装条件(轻便服装;靴子个人防护装备配橡胶靴;鞋子个人防护装备配跑鞋)时,消防员个人防护装备(PPE)对最大摄氧量(VO₂max)测定的影响。采用轻便服装进行布鲁斯协议作为参考测试。结果表明,布鲁斯轻便服装、PIP 轻便服装和 PSP 轻便服装之间的 VO₂max 没有差异。然而,在 PIP 靴子和鞋子以及 PSP 靴子和鞋子中,最大性能时间缩短(分别减少 7 分钟和 6 分钟),VO₂max 降低,而在亚最大运动期间,靴子和鞋子中的 VO₂增加率与轻便服装相比更高。与穿跑鞋相比,穿消防靴也会显著影响亚最大 VO₂,但不会影响 VO₂max。这些结果表明,在不穿 PPE 的情况下,从典型的 VO₂max 测试中确定的消防员最大性能可能高估了穿 PPE 的消防员的实际性能能力。

相似文献

1
The impact of firefighter personal protective equipment and treadmill protocol on maximal oxygen uptake.
J Occup Environ Hyg. 2013;10(7):397-407. doi: 10.1080/15459624.2013.792681.
3
A fractionation of the physiological burden of the personal protective equipment worn by firefighters.
Eur J Appl Physiol. 2012 Aug;112(8):2913-21. doi: 10.1007/s00421-011-2267-7. Epub 2011 Dec 6.
5
Evaluation of a treadmill test for predicting the aerobic capacity of firefighters.
Occup Med (Lond). 2004 Sep;54(6):373-8. doi: 10.1093/occmed/kqh008. Epub 2004 Sep 3.
6
Physiological cost of running while wearing spring-boots.
J Strength Cond Res. 2003 May;17(2):314-8. doi: 10.1519/1533-4287(2003)017<0314:pcorww>2.0.co;2.
7
Optimising high-intensity treadmill training using the running speed at maximal O(2) uptake and the time for which this can be maintained.
Eur J Appl Physiol. 2003 May;89(3-4):337-43. doi: 10.1007/s00421-003-0806-6. Epub 2003 Mar 25.
8
Physiological responses to simulated stair climbing in professional firefighters wearing rubber and leather boots.
Eur J Appl Physiol. 2009 Sep;107(2):163-8. doi: 10.1007/s00421-009-1092-8. Epub 2009 Jun 20.

引用本文的文献

1
Research on optimal strategy of different fire rescue tasks based on oxygen consumption.
Front Physiol. 2025 Mar 24;16:1548031. doi: 10.3389/fphys.2025.1548031. eCollection 2025.
2
A Quantitative Analysis of Internal and External Loads in Aviation Firefighting Using a Simulated Scenario.
Healthcare (Basel). 2025 Jan 7;13(2):97. doi: 10.3390/healthcare13020097.
3
Validity of heart rate derived core temperature estimation during simulated firefighting tasks.
Sci Rep. 2023 Dec 15;13(1):22503. doi: 10.1038/s41598-023-49929-x.
4
A Submaximal Field Test of Aerobic Capacity does not Accurately Reflect VO in Career Firefighters.
Int J Exerc Sci. 2022 Jan 1;15(4):221-230. doi: 10.70252/YLQD4760. eCollection 2022.
6
A review of test methods for evaluating mobility of firefighters wearing personal protective equipment.
Ind Health. 2022 Apr 1;60(2):106-120. doi: 10.2486/indhealth.2021-0157. Epub 2022 Jan 12.
7
Influence of Personal Protective Equipment on Wildland Firefighters' Physiological Response and Performance during the Pack Test.
Int J Environ Res Public Health. 2021 May 11;18(10):5050. doi: 10.3390/ijerph18105050.
8
Maximal Oxygen Consumption, Respiratory Volume and Some Related Factors in Fire-fighting Personnel.
Int J Prev Med. 2017 Apr 13;8:25. doi: 10.4103/ijpvm.IJPVM_299_16. eCollection 2017.
10
Experimental study of thermal comfort on stab resistant body armor.
Springerplus. 2016 Jul 26;5(1):1168. doi: 10.1186/s40064-016-2432-x. eCollection 2016.

本文引用的文献

3
A fractionation of the physiological burden of the personal protective equipment worn by firefighters.
Eur J Appl Physiol. 2012 Aug;112(8):2913-21. doi: 10.1007/s00421-011-2267-7. Epub 2011 Dec 6.
4
Physiological effects of boot weight and design on men and women firefighters.
J Occup Environ Hyg. 2010 Aug;7(8):477-82. doi: 10.1080/15459624.2010.486285.
5
The thermal ergonomics of firefighting reviewed.
Appl Ergon. 2010 Jan;41(1):161-72. doi: 10.1016/j.apergo.2009.07.001. Epub 2009 Aug 6.
7
Metabolic demands of simulated firefighting tasks.
Ergonomics. 2008 Sep;51(9):1418-25. doi: 10.1080/00140130802120259.
8
Respiratory gas exchange and physiological demands during a fire fighter evaluation circuit in men and women.
Eur J Appl Physiol. 2008 May;103(1):89-98. doi: 10.1007/s00421-008-0673-2. Epub 2008 Jan 19.
9
VO2max, protocol duration, and the VO2 plateau.
Med Sci Sports Exerc. 2007 Jul;39(7):1186-92. doi: 10.1249/mss.0b13e318054e304.
10
Effects of the self-contained breathing apparatus and fire protective clothing on maximal oxygen uptake.
Ergonomics. 2006 Aug 15;49(10):911-20. doi: 10.1080/00140130600667451.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验