Suppr超能文献

将分类与 fMRI 衍生的复杂网络测量相结合,用于潜在的神经诊断。

Combining classification with fMRI-derived complex network measures for potential neurodiagnostics.

机构信息

Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York, United States of America.

出版信息

PLoS One. 2013 May 6;8(5):e62867. doi: 10.1371/journal.pone.0062867. Print 2013.

Abstract

Complex network analysis (CNA), a subset of graph theory, is an emerging approach to the analysis of functional connectivity in the brain, allowing quantitative assessment of network properties such as functional segregation, integration, resilience, and centrality. Here, we show how a classification framework complements complex network analysis by providing an efficient and objective means of selecting the best network model characterizing given functional connectivity data. We describe a novel kernel-sum learning approach, block diagonal optimization (BDopt), which can be applied to CNA features to single out graph-theoretic characteristics and/or anatomical regions of interest underlying discrimination, while mitigating problems of multiple comparisons. As a proof of concept for the method's applicability to future neurodiagnostics, we apply BDopt classification to two resting state fMRI data sets: a trait (between-subjects) classification of patients with schizophrenia vs. controls, and a state (within-subjects) classification of wake vs. sleep, demonstrating powerful discriminant accuracy for the proposed framework.

摘要

复杂网络分析(CNA)是图论的一个分支,是一种用于分析大脑功能连接的新兴方法,可定量评估网络属性,如功能分离、整合、弹性和中心性。在这里,我们展示了分类框架如何通过提供一种有效和客观的方法来选择最佳的网络模型来描述给定的功能连接数据,从而补充复杂网络分析。我们描述了一种新的核和学习方法,块对角优化(BDopt),它可以应用于 CNA 特征,以突出区分的图论特征和/或感兴趣的解剖区域,同时减轻多重比较的问题。作为该方法应用于未来神经诊断的概念验证,我们将 BDopt 分类应用于两个静息态 fMRI 数据集:精神分裂症患者与对照组的特征(组间)分类,以及清醒与睡眠的状态(组内)分类,为所提出的框架展示了强大的判别准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa9/3646016/d4652880518c/pone.0062867.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验