Suppr超能文献

使用组合核和多源 fMRI 分析数据对群体进行特征描述:在精神分裂症中的应用。

Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia.

机构信息

Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131-0001, USA.

出版信息

Neuroimage. 2011 Sep 15;58(2):526-36. doi: 10.1016/j.neuroimage.2011.06.044. Epub 2011 Jun 24.

Abstract

Pattern classification of brain imaging data can enable the automatic detection of differences in cognitive processes of specific groups of interest. Furthermore, it can also give neuroanatomical information related to the regions of the brain that are most relevant to detect these differences by means of feature selection procedures, which are also well-suited to deal with the high dimensionality of brain imaging data. This work proposes the application of recursive feature elimination using a machine learning algorithm based on composite kernels to the classification of healthy controls and patients with schizophrenia. This framework, which evaluates nonlinear relationships between voxels, analyzes whole-brain fMRI data from an auditory task experiment that is segmented into anatomical regions and recursively eliminates the uninformative ones based on their relevance estimates, thus yielding the set of most discriminative brain areas for group classification. The collected data was processed using two analysis methods: the general linear model (GLM) and independent component analysis (ICA). GLM spatial maps as well as ICA temporal lobe and default mode component maps were then input to the classifier. A mean classification accuracy of up to 95% estimated with a leave-two-out cross-validation procedure was achieved by doing multi-source data classification. In addition, it is shown that the classification accuracy rate obtained by using multi-source data surpasses that reached by using single-source data, hence showing that this algorithm takes advantage of the complimentary nature of GLM and ICA.

摘要

脑成像数据的模式分类可以实现对特定感兴趣群体认知过程差异的自动检测。此外,通过特征选择过程还可以提供与检测这些差异最相关的脑区的神经解剖学信息,这些过程也非常适合处理脑成像数据的高维性。本研究提出了一种使用基于组合核的机器学习算法进行递归特征消除的应用,用于健康对照组和精神分裂症患者的分类。该框架评估了体素之间的非线性关系,对听觉任务实验的全脑 fMRI 数据进行分析,将其分割成解剖区域,并根据相关性估计递归地消除不相关区域,从而得到最具判别力的大脑区域集,用于组分类。使用两种分析方法(GLM 和 ICA)处理收集的数据。然后将 GLM 空间图以及 ICA 颞叶和默认模式成分图输入到分类器中。通过采用留二法交叉验证程序,实现了高达 95%的平均分类准确率。此外,还表明使用多源数据进行分类所获得的分类准确率超过了使用单源数据所达到的准确率,从而表明该算法利用了 GLM 和 ICA 的互补性。

相似文献

1
Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia.
Neuroimage. 2011 Sep 15;58(2):526-36. doi: 10.1016/j.neuroimage.2011.06.044. Epub 2011 Jun 24.
4
Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
Neuroimage. 2008 Oct 15;43(1):44-58. doi: 10.1016/j.neuroimage.2008.06.037. Epub 2008 Jul 11.
5
Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
Neuroimage. 2014 Apr 15;90:449-68. doi: 10.1016/j.neuroimage.2013.11.046. Epub 2014 Jan 2.
7
Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.
Neuroimage. 2014 Aug 1;96:117-32. doi: 10.1016/j.neuroimage.2014.03.074. Epub 2014 Apr 4.
8
A CCA+ICA based model for multi-task brain imaging data fusion and its application to schizophrenia.
Neuroimage. 2010 May 15;51(1):123-34. doi: 10.1016/j.neuroimage.2010.01.069. Epub 2010 Jan 28.
10
SCTICA: Sub-packet constrained temporal ICA method for fMRI data analysis.
Comput Biol Med. 2018 Nov 1;102:75-85. doi: 10.1016/j.compbiomed.2018.09.012. Epub 2018 Sep 17.

引用本文的文献

1
Imaging Transcriptomics of the Brain for Schizophrenia.
Alpha Psychiatry. 2024 Jan 1;25(1):9-14. doi: 10.5152/alphapsychiatry.2024.231369. eCollection 2024 Jan.
4
Method for persistent topological features extraction of schizophrenia patients' electroencephalography signal based on persistent homology.
Front Comput Neurosci. 2022 Oct 5;16:1024205. doi: 10.3389/fncom.2022.1024205. eCollection 2022.
5
Feature and decision-level fusion for schizophrenia detection based on resting-state fMRI data.
PLoS One. 2022 May 24;17(5):e0265300. doi: 10.1371/journal.pone.0265300. eCollection 2022.
6
Schizophrenia: A Survey of Artificial Intelligence Techniques Applied to Detection and Classification.
Int J Environ Res Public Health. 2021 Jun 5;18(11):6099. doi: 10.3390/ijerph18116099.
7
Multivariate Analysis of Structural and Functional Neuroimaging Can Inform Psychiatric Differential Diagnosis.
Diagnostics (Basel). 2020 Dec 24;11(1):19. doi: 10.3390/diagnostics11010019.
8
Towards a brain-based predictome of mental illness.
Hum Brain Mapp. 2020 Aug 15;41(12):3468-3535. doi: 10.1002/hbm.25013. Epub 2020 May 6.
9
Schizophrenia Identification Using Multi-View Graph Measures of Functional Brain Networks.
Front Bioeng Biotechnol. 2020 Jan 15;7:479. doi: 10.3389/fbioe.2019.00479. eCollection 2019.

本文引用的文献

1
Structural brain changes in aging: courses, causes and cognitive consequences.
Rev Neurosci. 2010;21(3):187-221. doi: 10.1515/revneuro.2010.21.3.187.
2
Sparse logistic regression for whole-brain classification of fMRI data.
Neuroimage. 2010 Jun;51(2):752-64. doi: 10.1016/j.neuroimage.2010.02.040. Epub 2010 Feb 24.
3
Color Stroop and negative priming in schizophrenia: an fMRI study.
Psychiatry Res. 2010 Jan 30;181(1):24-9. doi: 10.1016/j.pscychresns.2009.07.005.
5
Interrater and intermethod reliability of default mode network selection.
Hum Brain Mapp. 2009 Jul;30(7):2293-303. doi: 10.1002/hbm.20668.
7
Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
Neuroimage. 2008 Oct 15;43(1):44-58. doi: 10.1016/j.neuroimage.2008.06.037. Epub 2008 Jul 11.
8
Hybrid ICA-Bayesian network approach reveals distinct effective connectivity differences in schizophrenia.
Neuroimage. 2008 Oct 1;42(4):1560-8. doi: 10.1016/j.neuroimage.2008.05.065. Epub 2008 Jun 17.
9
A projection pursuit algorithm to classify individuals using fMRI data: Application to schizophrenia.
Neuroimage. 2008 Feb 15;39(4):1774-82. doi: 10.1016/j.neuroimage.2007.10.012.
10
Reading and controlling human brain activation using real-time functional magnetic resonance imaging.
Trends Cogn Sci. 2007 Nov;11(11):473-81. doi: 10.1016/j.tics.2007.08.014. Epub 2007 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验