Gallos Ioannis K, Gkiatis Kostakis, Matsopoulos George K, Siettos Constantinos
School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Greece.
School of Electrical and Computer Engineering, National Technical University of Athens, Greece.
AIMS Neurosci. 2021 Feb 19;8(2):295-321. doi: 10.3934/Neuroscience.2021016. eCollection 2021.
We construct Functional Connectivity Networks (FCN) from resting state fMRI (rsfMRI) recordings towards the classification of brain activity between healthy and schizophrenic subjects using a publicly available dataset (the COBRE dataset) of 145 subjects (74 healthy controls and 71 schizophrenic subjects). First, we match the anatomy of the brain of each individual to the Desikan-Killiany brain atlas. Then, we use the conventional approach of correlating the parcellated time series to construct FCN and ISOMAP, a nonlinear manifold learning algorithm to produce low-dimensional embeddings of the correlation matrices. For the classification analysis, we computed five key local graph-theoretic measures of the FCN and used the LASSO and Random Forest (RF) algorithms for feature selection. For the classification we used standard linear Support Vector Machines. The classification performance is tested by a double cross-validation scheme (consisting of an outer and an inner loop of "Leave one out" cross-validation (LOOCV)). The standard cross-correlation methodology produced a classification rate of 73.1%, while ISOMAP resulted in 79.3%, thus providing a simpler model with a smaller number of features as chosen from LASSO and RF, namely the participation coefficient of the right thalamus and the strength of the right lingual gyrus.
我们利用一个包含145名受试者(74名健康对照者和71名精神分裂症患者)的公开可用数据集(COBRE数据集),从静息态功能磁共振成像(rsfMRI)记录中构建功能连接网络(FCN),以对健康受试者和精神分裂症患者之间的脑活动进行分类。首先,我们将每个个体的脑部解剖结构与Desikan-Killiany脑图谱进行匹配。然后,我们使用将分割后的时间序列进行相关性分析的传统方法来构建FCN和ISOMAP(一种非线性流形学习算法,用于生成相关矩阵的低维嵌入)。对于分类分析,我们计算了FCN的五个关键局部图论指标,并使用套索(LASSO)和随机森林(RF)算法进行特征选择。对于分类,我们使用了标准的线性支持向量机。通过双重交叉验证方案(由“留一法”交叉验证(LOOCV)的外层和内层循环组成)对分类性能进行测试。标准互相关方法的分类率为73.1%,而ISOMAP的分类率为79.3%,从而提供了一个更简单的模型,该模型具有从LASSO和RF中选择的较少数量的特征,即右丘脑的参与系数和右舌回的强度。