Brain Imaging and Modeling Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health Bethesda, MD, USA.
Front Neurosci. 2013 May 14;7:70. doi: 10.3389/fnins.2013.00070. eCollection 2013.
The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define "effective connectivity" using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons.
在未来十年,连接估计方法的数量和种类可能会继续增加。为了将这种增长限制在最准确和最稳健的方法上,有必要对这些方法进行比较。然而,连接的性质难以捉摸,不同的方法可能试图识别连接的不同方面。不同方法之间的连接定义的共同点使得直接进行比较变得困难。在这里,我们使用一组共同的观测和状态方程来明确定义“有效连接”,这些方程适用于三种连接方法:动态因果建模(DCM)、多元自回归建模(MAR)和 fMRI 的切换线性动态系统(sLDSf)。在推导出这组方程的同时,我们还展示了许多其他流行的功能和有效连接方法实际上是这些方程的简化形式。我们讨论了这些连接对使用一种方法模拟另一种方法数据的实践的影响。在将三种有效连接方法进行数学连接后,从共同的方程中生成了具有不同区域和任务条件数量的模拟 fMRI 数据。该模拟数据明确包含了三个模型旨在识别的连接类型。将每种方法应用于模拟数据集,并分析参数识别的准确性。所有方法在识别正确的连接参数方面都超过了机会水平。对于所有类型的比较,sLDSf 方法在参数估计准确性方面均优于 DCM 和 MAR。