School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA.
Microsc Microanal. 2013 Aug;19(4):1027-35. doi: 10.1017/S1431927613001505. Epub 2013 May 31.
In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the liquid cell holder shadows the detector and electron energy-loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS in the study of chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap, and thickness of the liquid layer by valence EELS is demonstrated. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio regime as demonstrated for LiFePO4 in an aqueous solution. The potential for the use of valence EELS to understand in situ STEM reactions is demonstrated for beam-induced deposition of metallic copper: as copper clusters grow, EELS develops low-loss peaks corresponding to metallic copper. From these techniques, in situ imaging and valence EELS offer insights into the local electronic structure of nanoparticles and chemical reactions.
原位扫描透射电子显微镜(STEM)在液体中的应用是探索生物和材料过程的一种很有前途的方法。然而,原位化学鉴定的选择是有限的:由于液体池支架遮挡了探测器,因此无法进行 X 射线分析,而电子能量损失谱(EELS)在厚层中会受到多次散射的影响而退化。在这里,我们探索了 EELS 在实时和纳米尺度上研究其本征环境中的化学反应的极限。通过价带 EELS 确定了局部电子密度、光学带隙和液体层的厚度。通过比较理论和实验等离子体能量,我们发现液体似乎遵循了先前为固体建立的自由电子模型。对于水溶液中的 LiFePO4,低于光学带隙和液体等离子体能量的能量信号提供了高信噪比的区域,这一点得到了证明。对于金属铜的束流诱导沉积,价带 EELS 用于理解原位 STEM 反应的潜力得到了证明:随着铜簇的生长,EELS 发展出对应于金属铜的低损耗峰。通过这些技术,原位成像和价带 EELS 为纳米粒子和化学反应的局部电子结构提供了深入的了解。