Modarres Reza, Ouarda Taha B M J, Vanasse Alain, Orzanco Maria Gabriela, Gosselin Pierre
Hydroclimate modeling group, INRS-ETE, 490 de la Couronne, Quebec, Qc, Canada, G1K 9A9,
Int J Biometeorol. 2014 Jul;58(5):921-30. doi: 10.1007/s00484-013-0675-6. Epub 2013 May 31.
Changes in extreme meteorological variables and the demographic shift towards an older population have made it important to investigate the association of climate variables and hip fracture by advanced methods in order to determine the climate variables that most affect hip fracture incidence. The nonlinear autoregressive moving average with exogenous variable-generalized autoregressive conditional heteroscedasticity (ARMAX-GARCH) and multivariate GARCH (MGARCH) time series approaches were applied to investigate the nonlinear association between hip fracture rate in female and male patients aged 40-74 and 75+ years and climate variables in the period of 1993-2004, in Montreal, Canada. The models describe 50-56% of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as the influencing variables on the time-varying mean and variance of the hip fracture rate. The conditional covariance between climate variables and hip fracture rate is increasing exponentially, showing that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions are at their worst. In Montreal, climate variables, particularly snow depth and air temperature, appear to be important predictors of hip fracture incidence. The association of climate variables and hip fracture does not seem to change linearly with time, but increases exponentially under harsh climate conditions. The results of this study can be used to provide an adaptive climate-related public health program and ti guide allocation of services for avoiding hip fracture risk.
极端气象变量的变化以及人口向老年化的转变,使得采用先进方法研究气候变量与髋部骨折之间的关联变得尤为重要,以便确定对髋部骨折发生率影响最大的气候变量。运用带有外生变量的非线性自回归移动平均 - 广义自回归条件异方差模型(ARMAX - GARCH)和多元GARCH(MGARCH)时间序列方法,对1993 - 2004年期间加拿大蒙特利尔40 - 74岁及75岁以上女性和男性患者的髋部骨折发生率与气候变量之间的非线性关联进行了研究。这些模型描述了髋部骨折发生率每日变化的50 - 56%,并确定积雪深度、气温、日照时长和气压为髋部骨折发生率随时间变化的均值和方差的影响变量。气候变量与髋部骨折发生率之间的条件协方差呈指数增长,这表明当发生率较高且气候条件最差时,气候变量对髋部骨折发生率的影响最为剧烈。在蒙特利尔,气候变量,尤其是积雪深度和气温,似乎是髋部骨折发生率的重要预测指标。气候变量与髋部骨折之间的关联似乎并非随时间呈线性变化,而是在恶劣气候条件下呈指数增长。本研究结果可用于制定与气候相关的适应性公共卫生计划,并指导为避免髋部骨折风险而进行的服务分配。