O'Connell Lauren A
Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
J Neurogenet. 2013 Sep;27(3):69-85. doi: 10.3109/01677063.2013.789511. Epub 2013 Jun 7.
The emerging field of "neuro-evo-devo" is beginning to reveal how the molecular and neural substrates that underlie brain function are based on variations in evolutionarily ancient and conserved neurochemical and neural circuit themes. Comparative work across bilaterians is reviewed to highlight how early neural patterning specifies modularity of the embryonic brain, which lays a foundation on which manipulation of neurogenesis creates adjustments in brain size. Small variation within these developmental mechanisms contributes to the evolution of brain diversity. Comparing the specification and spatial distribution of neural phenotypes across bilaterians has also suggested some major brain evolution trends, although much more work on profiling neural connections with neurochemical specificity across a wide diversity of organisms is needed. These comparative approaches investigating the evolution of brain form and function hold great promise for facilitating a mechanistic understanding of how variation in brain morphology, neural phenotypes, and neural networks influences brain function and behavioral diversity across organisms.
新兴的“神经进化发育学”领域开始揭示,构成大脑功能基础的分子和神经基质是如何基于进化上古老且保守的神经化学和神经回路主题的变化而形成的。本文综述了两侧对称动物的比较研究工作,以突出早期神经模式如何确定胚胎大脑的模块性,这为通过操纵神经发生来调整脑容量奠定了基础。这些发育机制中的微小变化促成了大脑多样性的进化。比较两侧对称动物神经表型的特化和空间分布也揭示了一些主要的大脑进化趋势,尽管还需要开展更多工作,以全面分析各种生物中具有神经化学特异性的神经连接。这些研究大脑形态和功能进化的比较方法,有望促进我们从机制上理解大脑形态、神经表型和神经网络的变化如何影响生物的大脑功能和行为多样性。