Suppr超能文献

一个由低维脉冲激励原语驱动的人类运动的肌肉骨骼模型。

A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives.

机构信息

Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, University Medical Center Göttingen Göttingen, Germany.

出版信息

Front Comput Neurosci. 2013 Jun 26;7:79. doi: 10.3389/fncom.2013.00079. eCollection 2013.

Abstract

Human locomotion has been described as being generated by an impulsive (burst-like) excitation of groups of musculotendon units, with timing dependent on the biomechanical goal of the task. Despite this view being supported by many experimental observations on specific locomotion tasks, it is still unknown if the same impulsive controller (i.e., a low-dimensional set of time-delayed excitastion primitives) can be used as input drive for large musculoskeletal models across different human locomotion tasks. For this purpose, we extracted, with non-negative matrix factorization, five non-negative factors from a large sample of muscle electromyograms in two healthy subjects during four motor tasks. These included walking, running, sidestepping, and crossover cutting maneuvers. The extracted non-negative factors were then averaged and parameterized to obtain task-generic Gaussian-shaped impulsive excitation curves or primitives. These were used to drive a subject-specific musculoskeletal model of the human lower extremity. Results showed that the same set of five impulsive excitation primitives could be used to predict the dynamics of 34 musculotendon units and the resulting hip, knee and ankle joint moments (i.e., NRMSE = 0.18 ± 0.08, and R (2) = 0.73 ± 0.22 across all tasks and subjects) without substantial loss of accuracy with respect to using experimental electromyograms (i.e., NRMSE = 0.16 ± 0.07, and R (2) = 0.78 ± 0.18 across all tasks and subjects). Results support the hypothesis that biomechanically different motor tasks might share similar neuromuscular control strategies. This might have implications in neurorehabilitation technologies such as human-machine interfaces for the torque-driven, proportional control of powered prostheses and orthoses. In this, device control commands (i.e., predicted joint torque) could be derived without direct experimental data but relying on simple parameterized Gaussian-shaped curves, thus decreasing the input drive complexity and the number of needed sensors.

摘要

人类运动被描述为肌肉肌腱单元群的冲动(爆发样)兴奋产生的,其定时取决于任务的生物力学目标。尽管这种观点得到了许多特定运动任务的实验观察的支持,但仍不清楚相同的冲动控制器(即,一组时滞兴奋原的低维集合)是否可以作为输入驱动器用于不同人类运动任务的大型肌肉骨骼模型。为此,我们使用非负矩阵分解从两名健康受试者在四项运动任务中肌肉肌电图的大量样本中提取了五个非负因子。这些运动任务包括行走、跑步、侧身移动和交叉切割动作。然后,对提取的非负因子进行平均和参数化,以获得任务通用的高斯形脉冲激励曲线或原。这些被用来驱动人体下肢的特定于个体的肌肉骨骼模型。结果表明,相同的五组脉冲激励原可以用来预测 34 个肌肉肌腱单元的动力学以及由此产生的髋关节、膝关节和踝关节力矩(即,NRMSE = 0.18 ± 0.08,R(2)= 0.73 ± 0.22 跨所有任务和受试者),而不会因使用实验肌电图而导致精度大幅下降(即,NRMSE = 0.16 ± 0.07,R(2)= 0.78 ± 0.18 跨所有任务和受试者)。结果支持这样一种假设,即生物力学上不同的运动任务可能共享相似的神经肌肉控制策略。这可能对神经康复技术产生影响,例如用于动力假肢和矫形器的扭矩驱动、比例控制的人机接口。在这方面,设备控制命令(即,预测的关节扭矩)可以从没有直接实验数据的情况下推导出来,而是依赖于简单的参数化高斯形曲线,从而减少输入驱动的复杂性和所需传感器的数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4c/3693080/6add8998f5df/fncom-07-00079-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验