Suppr超能文献

细胞簇中的营养屏蔽

Nutrient shielding in clusters of cells.

作者信息

Lavrentovich Maxim O, Koschwanez John H, Nelson David R

机构信息

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062703. doi: 10.1103/PhysRevE.87.062703. Epub 2013 Jun 10.

Abstract

Cellular nutrient consumption is influenced by both the nutrient uptake kinetics of an individual cell and the cells' spatial arrangement. Large cell clusters or colonies have inhibited growth at the cluster's center due to the shielding of nutrients by the cells closer to the surface. We develop an effective medium theory that predicts a thickness ℓ of the outer shell of cells in the cluster that receives enough nutrient to grow. The cells are treated as partially absorbing identical spherical nutrient sinks, and we identify a dimensionless parameter ν that characterizes the absorption strength of each cell. The parameter ν can vary over many orders of magnitude among different cell types, ranging from bacteria and yeast to human tissue. The thickness ℓ decreases with increasing ν, increasing cell volume fraction φ, and decreasing ambient nutrient concentration ψ(∞). The theoretical results are compared with numerical simulations and experiments. In the latter studies, colonies of budding yeast, Saccharomyces cerevisiae, are grown on glucose media and imaged under a confocal microscope. We measure the growth inside the colonies via a fluorescent protein reporter and compare the experimental and theoretical results for the thickness ℓ.

摘要

细胞营养物质消耗受单个细胞的营养摄取动力学和细胞的空间排列影响。大型细胞簇或菌落由于靠近表面的细胞对营养物质的屏蔽作用,其中心生长受到抑制。我们发展了一种有效介质理论,该理论预测了簇中接受足够营养以生长的外层细胞壳的厚度ℓ。细胞被视为部分吸收相同的球形营养汇,并且我们确定了一个无量纲参数ν,它表征每个细胞的吸收强度。参数ν在不同细胞类型之间可以在多个数量级上变化,范围从细菌、酵母到人体组织。厚度ℓ随着ν的增加、细胞体积分数φ的增加以及环境营养浓度ψ(∞)的降低而减小。理论结果与数值模拟和实验进行了比较。在后者的研究中,酿酒酵母的出芽酵母菌落生长在葡萄糖培养基上,并在共聚焦显微镜下成像。我们通过荧光蛋白报告基因测量菌落内部的生长情况,并比较厚度ℓ的实验和理论结果。

相似文献

1
Nutrient shielding in clusters of cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062703. doi: 10.1103/PhysRevE.87.062703. Epub 2013 Jun 10.
2
Pattern formation in multiphase models of chemotactic cell aggregation.
Math Med Biol. 2018 Sep 11;35(3):319-346. doi: 10.1093/imammb/dqx005.
3
A density-based cellular automaton model for studying the clustering of noninvasive cells.
IEEE Trans Biomed Eng. 2004 Jul;51(7):1274-6. doi: 10.1109/TBME.2004.827256.
4
Phase transition in the collective migration of tissue cells: experiment and model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 1):061908. doi: 10.1103/PhysRevE.74.061908. Epub 2006 Dec 22.
5
Kinetic Monte Carlo and cellular particle dynamics simulations of multicellular systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 1):031907. doi: 10.1103/PhysRevE.85.031907. Epub 2012 Mar 8.
6
Integrative analysis of yeast colony growth.
Commun Biol. 2024 Apr 29;7(1):511. doi: 10.1038/s42003-024-06218-1.
7
Swarming behavior of gradient-responsive Brownian particles in a porous medium.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011916. doi: 10.1103/PhysRevE.86.011916. Epub 2012 Jul 18.
8
Stress-sensitive nutrient consumption via steady and non-reversing dynamic shear in continuous-flow rotational bioreactors.
Biophys Chem. 2009 May;141(2-3):140-52. doi: 10.1016/j.bpc.2009.01.003. Epub 2009 Jan 16.
10
Many-body theory of chemotactic cell-cell interactions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 1):051916. doi: 10.1103/PhysRevE.70.051916. Epub 2004 Nov 29.

引用本文的文献

1
Metabolically driven flows enable exponential growth in macroscopic multicellular yeast.
Sci Adv. 2025 Jun 20;11(25):eadr6399. doi: 10.1126/sciadv.adr6399.
2
Metabolically-driven flows enable exponential growth in macroscopic multicellular yeast.
bioRxiv. 2024 Jun 22:2024.06.19.599734. doi: 10.1101/2024.06.19.599734.
3
Genetic mixing and demixing on expanding spherical frontiers.
ISME Commun. 2024 Jan 22;4(1):ycae009. doi: 10.1093/ismeco/ycae009. eCollection 2024 Jan.
4
Optogenetic spatial patterning of cooperation in yeast populations.
Nat Commun. 2024 Jan 2;15(1):75. doi: 10.1038/s41467-023-44379-5.
5
Motility mediates satellite formation in confined biofilms.
ISME J. 2023 Nov;17(11):1819-1827. doi: 10.1038/s41396-023-01494-x. Epub 2023 Aug 17.
6
Alternating selection for dispersal and multicellularity favors regulated life cycles.
Curr Biol. 2023 May 8;33(9):1809-1817.e3. doi: 10.1016/j.cub.2023.03.031. Epub 2023 Apr 4.
7
Vertical growth dynamics of biofilms.
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2214211120. doi: 10.1073/pnas.2214211120. Epub 2023 Mar 7.
8
Impact of crowding on the diversity of expanding populations.
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2208361120. doi: 10.1073/pnas.2208361120. Epub 2023 Mar 7.
10
Spatial regulation of cell motility and its fitness effect in a surface-attached bacterial community.
ISME J. 2022 Apr;16(4):1004-1011. doi: 10.1038/s41396-021-01148-w. Epub 2021 Nov 10.

本文引用的文献

1
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.
2
Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity.
PLoS Biol. 2011 Aug;9(8):e1001122. doi: 10.1371/journal.pbio.1001122. Epub 2011 Aug 9.
3
Globally optimal stitching of tiled 3D microscopic image acquisitions.
Bioinformatics. 2009 Jun 1;25(11):1463-5. doi: 10.1093/bioinformatics/btp184. Epub 2009 Apr 3.
4
5
Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast.
Mol Biol Cell. 2008 Jan;19(1):352-67. doi: 10.1091/mbc.e07-08-0779. Epub 2007 Oct 24.
6
A history of research on yeasts 9: regulation of sugar metabolism.
Yeast. 2005 Aug;22(11):835-94. doi: 10.1002/yea.1249.
7
Elastic instability in growing yeast colonies.
Biophys J. 2004 May;86(5):2740-7. doi: 10.1016/S0006-3495(04)74327-1.
8
Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
Bioresour Technol. 2004 May;92(3):251-60. doi: 10.1016/j.biortech.2003.09.009.
9
Is random close packing of spheres well defined?
Phys Rev Lett. 2000 Mar 6;84(10):2064-7. doi: 10.1103/PhysRevLett.84.2064.
10
Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry.
Yeast. 2000 Oct;16(14):1313-23. doi: 10.1002/1097-0061(200010)16:14<1313::AID-YEA626>3.0.CO;2-O.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验