Center for Comprehensive Informatics, Emory University, Atlanta, GA 30322, USA.
IEEE Trans Biomed Eng. 2011 Dec;58(12):3469-74. doi: 10.1109/TBME.2011.2169256. Epub 2011 Sep 23.
Multimodal, multiscale data synthesis is becoming increasingly critical for successful translational biomedical research. In this letter, we present a large-scale investigative initiative on glioblastoma, a high-grade brain tumor, with complementary data types using in silico approaches. We integrate and analyze data from The Cancer Genome Atlas Project on glioblastoma that includes novel nuclear phenotypic data derived from microscopic slides, genotypic signatures described by transcriptional class and genetic alterations, and clinical outcomes defined by response to therapy and patient survival. Our preliminary results demonstrate numerous clinically and biologically significant correlations across multiple data types, revealing the power of in silico multimodal data integration for cancer research.
多模态、多尺度数据综合对于成功的转化医学研究变得越来越重要。在这封信中,我们提出了一个关于胶质母细胞瘤的大规模研究计划,这是一种高级别的脑肿瘤,使用计算方法补充了互补的数据类型。我们整合和分析了来自癌症基因组图谱项目的胶质母细胞瘤数据,其中包括从显微镜载玻片获得的新型核表型数据、转录分类描述的基因型特征以及治疗反应和患者生存定义的临床结果。我们的初步结果表明,多种数据类型之间存在许多具有临床和生物学意义的相关性,这显示了计算多模态数据综合在癌症研究中的强大功能。