Ireland Philip M, McMahon Róisín M, Marshall Laura E, Halili Maria, Furlong Emily, Tay Stephanie, Martin Jennifer L, Sarkar-Tyson Mitali
1 Defence Science and Technology Laboratory , Porton Down, Salisbury, Wiltshire, United Kingdom .
Antioxid Redox Signal. 2014 Feb 1;20(4):606-17. doi: 10.1089/ars.2013.5375. Epub 2013 Sep 20.
The intracellular pathogen Burkholderia pseudomallei causes the disease melioidosis, a major source of morbidity and mortality in southeast Asia and northern Australia. The need to develop novel antimicrobials is compounded by the absence of a licensed vaccine and the bacterium's resistance to multiple antibiotics. In a number of clinically relevant Gram-negative pathogens, DsbA is the primary disulfide oxidoreductase responsible for catalyzing the formation of disulfide bonds in secreted and membrane-associated proteins. In this study, a putative B. pseudomallei dsbA gene was evaluated functionally and structurally and its contribution to infection assessed.
Biochemical studies confirmed the dsbA gene encodes a protein disulfide oxidoreductase. A dsbA deletion strain of B. pseudomallei was attenuated in both macrophages and a BALB/c mouse model of infection and displayed pleiotropic phenotypes that included defects in both secretion and motility. The 1.9 Å resolution crystal structure of BpsDsbA revealed differences from the classic member of this family Escherichia coli DsbA, in particular within the region surrounding the active site disulfide where EcDsbA engages with its partner protein E. coli DsbB, indicating that the interaction of BpsDsbA with its proposed partner BpsDsbB may be distinct from that of EcDsbA-EcDsbB.
This study has characterized BpsDsbA biochemically and structurally and determined that it is required for virulence of B. pseudomallei.
These data establish a critical role for BpsDsbA in B. pseudomallei infection, which in combination with our structural characterization of BpsDsbA will facilitate the future development of rationally designed inhibitors against this drug-resistant organism.
细胞内病原体伯克霍尔德菌(Burkholderia pseudomallei)可引发类鼻疽病,这是东南亚和澳大利亚北部发病和死亡的主要原因。由于缺乏获批疫苗以及该细菌对多种抗生素具有抗性,开发新型抗菌药物的需求变得更加迫切。在许多临床相关的革兰氏阴性病原体中,DsbA是主要的二硫键氧化还原酶,负责催化分泌蛋白和膜相关蛋白中二硫键的形成。在本研究中,对假定的伯克霍尔德菌dsbA基因进行了功能和结构评估,并评估了其对感染的作用。
生化研究证实dsbA基因编码一种蛋白质二硫键氧化还原酶。伯克霍尔德菌的dsbA缺失菌株在巨噬细胞和BALB/c小鼠感染模型中均表现出毒力减弱,并呈现出多效性表型,包括分泌和运动缺陷。BpsDsbA的1.9 Å分辨率晶体结构显示出与该家族经典成员大肠杆菌DsbA的差异,特别是在活性位点二硫键周围区域,大肠杆菌DsbA与其伴侣蛋白大肠杆菌DsbB在此区域相互作用,这表明BpsDsbA与其假定的伴侣BpsDsbB的相互作用可能与大肠杆菌DsbA - 大肠杆菌DsbB不同。
本研究对BpsDsbA进行了生化和结构表征,并确定它是伯克霍尔德菌毒力所必需的。
这些数据确定了BpsDsbA在伯克霍尔德菌感染中的关键作用,结合我们对BpsDsbA的结构表征,将有助于未来针对这种耐药生物体合理设计抑制剂的开发。