Suppr超能文献

一种灵活的分析罕见变异的方法,允许对二分类或定量性状的影响进行混合。

A flexible approach for the analysis of rare variants allowing for a mixture of effects on binary or quantitative traits.

机构信息

Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.

出版信息

PLoS Genet. 2013;9(8):e1003694. doi: 10.1371/journal.pgen.1003694. Epub 2013 Aug 15.

Abstract

Multiple rare variants either within or across genes have been hypothesised to collectively influence complex human traits. The increasing availability of high throughput sequencing technologies offers the opportunity to study the effect of rare variants on these traits. However, appropriate and computationally efficient analytical methods are required to account for collections of rare variants that display a combination of protective, deleterious and null effects on the trait. We have developed a novel method for the analysis of rare genetic variation in a gene, region or pathway that, by simply aggregating summary statistics at each variant, can: (i) test for the presence of a mixture of effects on a trait; (ii) be applied to both binary and quantitative traits in population-based and family-based data; (iii) adjust for covariates to allow for non-genetic risk factors and; (iv) incorporate imputed genetic variation. In addition, for preliminary identification of promising genes, the method can be applied to association summary statistics, available from meta-analysis of published data, for example, without the need for individual level genotype data. Through simulation, we show that our method is immune to the presence of bi-directional effects, with no apparent loss in power across a range of different mixtures, and can achieve greater power than existing approaches as long as summary statistics at each variant are robust. We apply our method to investigate association of type-1 diabetes with imputed rare variants within genes in the major histocompatibility complex using genotype data from the Wellcome Trust Case Control Consortium.

摘要

多种罕见变异体,无论是在单个基因内还是跨基因,都被假设可以共同影响复杂的人类特征。高通量测序技术的不断普及为研究罕见变异对这些特征的影响提供了机会。然而,需要适当和计算效率高的分析方法来解释这些具有保护、有害和无效作用的罕见变异的集合对特征的影响。我们开发了一种分析基因、区域或途径中罕见遗传变异的新方法,通过简单地在每个变体处汇总汇总统计信息,可以:(i) 测试在特征上是否存在混合效应;(ii) 应用于基于人群和基于家庭的二进制和定量特征数据;(iii) 调整协变量以允许非遗传风险因素;(iv) 合并推断的遗传变异。此外,对于有希望的基因的初步鉴定,该方法可以应用于关联汇总统计信息,例如,从已发表数据的荟萃分析中获得,而无需个体水平的基因型数据。通过模拟,我们表明我们的方法对双向效应具有免疫力,在一系列不同的混合物中,其功效没有明显下降,并且只要每个变体的汇总统计信息是稳健的,它可以比现有方法获得更大的功效。我们应用我们的方法来研究在英国 Wellcome Trust 病例对照协会的基因型数据中,主要组织相容性复合物内的基因中的罕见变异与 1 型糖尿病之间的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f126/3744430/3c78be3ccae4/pgen.1003694.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验