Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA.
PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.
The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet. In this study, gnotobiotic mice were colonized with an artificial microbiota comprising 12 sequenced human gut bacterial species and fed oscillating diets of disparate composition. Rapid, reproducible, and reversible changes in the structure of this assemblage were observed. Time-series microbial RNA-Seq analyses revealed staggered functional responses to diet shifts throughout the assemblage that were heavily focused on carbohydrate and amino acid metabolism. High-resolution shotgun metaproteomics confirmed many of these responses at a protein level. One member, Bacteroides cellulosilyticus WH2, proved exceptionally fit regardless of diet. Its genome encoded more carbohydrate active enzymes than any previously sequenced member of the Bacteroidetes. Transcriptional profiling indicated that B. cellulosilyticus WH2 is an adaptive forager that tailors its versatile carbohydrate utilization strategy to available dietary polysaccharides, with a strong emphasis on plant-derived xylans abundant in dietary staples like cereal grains. Two highly expressed, diet-specific polysaccharide utilization loci (PULs) in B. cellulosilyticus WH2 were identified, one with characteristics of xylan utilization systems. Introduction of a B. cellulosilyticus WH2 library comprising >90,000 isogenic transposon mutants into gnotobiotic mice, along with the other artificial community members, confirmed that these loci represent critical diet-specific fitness determinants. Carbohydrates that trigger dramatic increases in expression of these two loci and many of the organism's 111 other predicted PULs were identified by RNA-Seq during in vitro growth on 31 distinct carbohydrate substrates, allowing us to better interpret in vivo RNA-Seq and proteomics data. These results offer insight into how gut microbes adapt to dietary perturbations at both a community level and from the perspective of a well-adapted symbiont with exceptional saccharolytic capabilities, and illustrate the value of artificial communities.
人体肠道微生物群是一个重要的代谢器官,但人们对其各个物种如何相互作用、建立优势地位以及对饮食等环境因素的变化做出响应知之甚少。在这项研究中,无菌小鼠被定植了由 12 个人类肠道细菌物种组成的人工微生物群,并接受了组成截然不同的振荡饮食。观察到该组合结构迅速、可重复且可逆转的变化。整个组合中对饮食变化的时间序列微生物 RNA-Seq 分析显示出功能响应的交错,这些响应主要集中在碳水化合物和氨基酸代谢上。高分辨率的鸟枪法宏蛋白质组学在蛋白质水平上证实了许多这些响应。其中一个成员,拟杆菌属纤维素分解菌 WH2,无论饮食如何,都表现出特别的适应性。其基因组编码的碳水化合物活性酶多于任何以前测序的拟杆菌门成员。转录谱分析表明,拟杆菌属纤维素分解菌 WH2 是一种适应性觅食者,它根据可用的膳食多糖定制其多功能碳水化合物利用策略,强烈强调植物衍生的木聚糖,这些木聚糖在谷物等膳食主食中丰富。在拟杆菌属纤维素分解菌 WH2 中鉴定出两个高度表达的、特定于饮食的多糖利用基因座(PULs),其中一个具有木聚糖利用系统的特征。将包含>90,000个同源转座子突变体的拟杆菌属纤维素分解菌 WH2 文库以及其他人工群落成员引入无菌小鼠,证实这些基因座代表关键的特定于饮食的适应性决定因素。通过在 31 种不同碳水化合物底物上体外生长时的 RNA-Seq,鉴定出触发这两个基因座以及该生物体的 111 个其他预测 PUL 表达急剧增加的碳水化合物,这使我们能够更好地解释体内 RNA-Seq 和蛋白质组学数据。这些结果深入了解了肠道微生物如何在群落水平和具有特殊糖解能力的适应性共生体的角度适应饮食干扰,同时说明了人工群落的价值。