Suppr超能文献

酵母(S. cerevisiae)代谢挥发物能否提供多态信号?

Can yeast (S. cerevisiae) metabolic volatiles provide polymorphic signaling?

机构信息

Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America.

出版信息

PLoS One. 2013 Aug 19;8(8):e70219. doi: 10.1371/journal.pone.0070219. eCollection 2013.

Abstract

Chemical signaling between organisms is a ubiquitous and evolutionarily dynamic process that helps to ensure mate recognition, location of nutrients, avoidance of toxins, and social cooperation. Evolutionary changes in chemical communication systems progress through natural variation within the organism generating the signal as well as the responding individuals. A promising yet poorly understood system with which to probe the importance of this variation exists between D. melanogaster and S. cerevisiae. D. melanogaster relies on yeast for nutrients, while also serving as a vector for yeast cell dispersal. Both are outstanding genetic and genomic models, with Drosophila also serving as a preeminent model for sensory neurobiology. To help develop these two genetic models as an ecological model, we have tested if - and to what extent - S. cerevisiae is capable of producing polymorphic signaling through variation in metabolic volatiles. We have carried out a chemical phenotyping experiment for 14 diverse accessions within a common garden random block design. Leveraging genomic sequences for 11 of the accessions, we ensured a genetically broad sample and tested for phylogenetic signal arising from phenotypic dataset. Our results demonstrate that significant quantitative differences for volatile blends do exist among S. cerevisiae accessions. Of particular ecological relevance, the compounds driving the blend differences (acetoin, 2-phenyl ethanol and 3-methyl-1-butanol) are known ligands for D. melanogasters chemosensory receptors, and are related to sensory behaviors. Though unable to correlate the genetic and volatile measurements, our data point clear ways forward for behavioral assays aimed at understanding the implications of this variation.

摘要

生物之间的化学信号传递是一种普遍存在且具有进化动态性的过程,有助于确保配偶识别、营养物质定位、毒素避免和社会合作。化学通讯系统的进化变化是通过生物体内部产生信号的自然变异以及响应个体的进化变化而进行的。在 D. melanogaster 和 S. cerevisiae 之间存在着一种很有前途但了解甚少的系统,可以用来探究这种变异的重要性。D. melanogaster 依赖酵母获取营养,同时也充当酵母细胞扩散的载体。两者都是出色的遗传和基因组模型,而果蝇也是感觉神经生物学的杰出模型。为了帮助将这两个遗传模型发展为生态模型,我们已经测试了 S. cerevisiae 是否以及在何种程度上能够通过代谢挥发物的变化产生多态性信号。我们在一个常见花园随机块设计中对 14 个不同的品系进行了化学表型实验。利用 11 个品系的基因组序列,我们确保了遗传上广泛的样本,并测试了表型数据集产生的系统发育信号。我们的结果表明,S. cerevisiae 品系之间确实存在挥发性混合物的显著定量差异。特别具有生态相关性的是,驱动混合物差异的化合物(乙酰丙酮、2-苯乙醇和 3-甲基-1-丁醇)是 D. melanogaster 化学感觉受体的已知配体,与感觉行为有关。虽然我们无法将遗传和挥发性测量结果相关联,但我们的数据为旨在理解这种变异影响的行为测定指明了明确的前进方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4e4/3747187/9e1f2fda06c6/pone.0070219.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验