Suppr超能文献

蛋白质模板化无机纳米颗粒的尺寸与结晶度

Size and crystallinity in protein-templated inorganic nanoparticles.

作者信息

Jolley Craig C, Uchida Masaki, Reichhardt Courtney, Harrington Richard, Kang Sebyung, Klem Michael T, Parise John B, Douglas Trevor

机构信息

Department of Chemistry & Biochemistry, Montana State University ; Astrobiology Biogeocatalysis Research Center, Montana State University.

出版信息

Chem Mater. 2010 Aug 24;22(16):4612-4618. doi: 10.1021/cm100657w.

Abstract

Protein cages such as ferritins and virus capsids have been used as containers to synthesize a wide variety of protein-templated inorganic nanoparticles. While identification of the inorganic crystal phase has been successful in some cases, very little is known about the detailed nanoscale structure of the inorganic component. We have used pair distribution function analysis of total X-ray scattering to measure the crystalline domain size in nanoparticles of ferrihydrite, γ-FeO, MnO, CoPt, and FePt grown inside 24-meric ferritin cages from and . The material properties of these protein-templated nanoparticles are influenced by processes at a variety of length scales: the chemistry of the material determines the precise arrangement of atoms at very short distances, while the interior volume of the protein cage constrains the maximum nanoparticle size attainable. At intermediate length scales, the size of coherent crystalline domains appears to be constrained by the arrangement of crystal nucleation sites on the interior of the cage. Based on these observations, some potential synthetic strategies for the control of crystalline domain size in protein-templated nanoparticles are suggested.

摘要

诸如铁蛋白和病毒衣壳之类的蛋白质笼已被用作容器来合成各种各样的蛋白质模板无机纳米颗粒。虽然在某些情况下已成功鉴定出无机晶相,但对于无机成分的详细纳米级结构却知之甚少。我们利用总X射线散射的对分布函数分析来测量在来自[具体来源1]和[具体来源2]的24聚体铁蛋白笼内生长的水铁矿、γ-FeO、MnO、CoPt和FePt纳米颗粒中的晶畴尺寸。这些蛋白质模板纳米颗粒的材料特性受到各种长度尺度过程的影响:材料的化学性质决定了极短距离内原子的精确排列,而蛋白质笼的内部体积限制了可达到的最大纳米颗粒尺寸。在中间长度尺度上,相干晶畴的尺寸似乎受到笼内部晶体成核位点排列的限制。基于这些观察结果,提出了一些控制蛋白质模板纳米颗粒中晶畴尺寸的潜在合成策略。

相似文献

1
Size and crystallinity in protein-templated inorganic nanoparticles.
Chem Mater. 2010 Aug 24;22(16):4612-4618. doi: 10.1021/cm100657w.
2
The Crystal Structure of a Maxi/Mini-Ferritin Chimera Reveals Guiding Principles for the Assembly of Protein Cages.
Biochemistry. 2017 Aug 1;56(30):3894-3899. doi: 10.1021/acs.biochem.7b00312. Epub 2017 Jul 21.
3
Crystalline Biohybrid Materials Based on Protein Cages.
Methods Mol Biol. 2023;2671:361-386. doi: 10.1007/978-1-0716-3222-2_21.
5
Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.
Acc Chem Res. 2016 May 17;49(5):784-91. doi: 10.1021/ar500469e. Epub 2016 May 2.
6
Designing non-native iron-binding site on a protein cage for biological synthesis of nanoparticles.
Small. 2014 Aug 13;10(15):3131-8. doi: 10.1002/smll.201303516. Epub 2014 May 2.
7
Electrostatic Self-Assembly of Protein Cage Arrays.
Methods Mol Biol. 2021;2208:123-133. doi: 10.1007/978-1-0716-0928-6_8.
8
Use of protein cages as a template for confined synthesis of inorganic and organic nanoparticles.
Methods Mol Biol. 2015;1252:17-25. doi: 10.1007/978-1-4939-2131-7_2.
9
Observation of gold sub-nanocluster nucleation within a crystalline protein cage.
Nat Commun. 2017 Mar 16;8:14820. doi: 10.1038/ncomms14820.
10

引用本文的文献

1
Better together: biomimetic nanomedicines for high performance tumor therapy.
Beilstein J Nanotechnol. 2025 Aug 5;16:1246-1276. doi: 10.3762/bjnano.16.92. eCollection 2025.
2
Tunable crystalline assemblies using surface-engineered protein cages.
Protein Sci. 2024 Sep;33(9):e5153. doi: 10.1002/pro.5153.
3
Thermostable iron oxide nanoparticle synthesis within recombinant ferritins from the hyperthermophile CH1.
RSC Adv. 2019 Nov 29;9(67):39381-39393. doi: 10.1039/c9ra07397c. eCollection 2019 Nov 27.
4
Development of an Effective Tumor-Targeted Contrast Agent for Magnetic Resonance Imaging Based on Mn/H-Ferritin Nanocomplexes.
ACS Appl Bio Mater. 2021 Nov 15;4(11):7800-7810. doi: 10.1021/acsabm.1c00724. Epub 2021 Oct 19.
5
Magnetoferritin: Process, Prospects, and Their Biomedical Applications.
Int J Mol Sci. 2019 May 16;20(10):2426. doi: 10.3390/ijms20102426.
6
Functional ferritin nanoparticles for biomedical applications.
Front Chem Sci Eng. 2017 Dec;11(4):633-646. doi: 10.1007/s11705-017-1620-8. Epub 2017 Feb 15.
7
Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding.
PLoS One. 2016 Sep 13;11(9):e0162848. doi: 10.1371/journal.pone.0162848. eCollection 2016.
8
Ferritin family proteins and their use in bionanotechnology.
N Biotechnol. 2015 Dec 25;32(6):651-7. doi: 10.1016/j.nbt.2014.12.006. Epub 2015 Jan 5.
9
Anisotropic nanocrystal arrays organized on protein lattices formed by recombinant clathrin fragments.
J Mater Chem. 2012 Dec 28;22(44):23335-23339. doi: 10.1039/C2JM35019J.

本文引用的文献

1
PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals.
J Phys Condens Matter. 2007 Aug 22;19(33):335219. doi: 10.1088/0953-8984/19/33/335219. Epub 2007 Jul 4.
2
Structure and photoelectrochemistry of a virus capsid-TiO2 nanocomposite.
Nanoscale. 2011 Mar;3(3):1004-7. doi: 10.1039/c0nr00378f. Epub 2010 Dec 6.
3
A click chemistry based coordination polymer inside small heat shock protein.
Chem Commun (Camb). 2010 Jan 14;46(2):264-6. doi: 10.1039/b920868b. Epub 2009 Nov 17.
8
A human ferritin iron oxide nano-composite magnetic resonance contrast agent.
Magn Reson Med. 2008 Nov;60(5):1073-81. doi: 10.1002/mrm.21761.
10
Plant viruses as biotemplates for materials and their use in nanotechnology.
Annu Rev Phytopathol. 2008;46:361-84. doi: 10.1146/annurev.phyto.032508.131939.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验