Mehonic A, Vrajitoarea A, Cueff S, Hudziak S, Howe H, Labbé C, Rizk R, Pepper M, Kenyon A J
Department of Electronic & Electrical Engineering, UCL, Torrington Place, London WC1E 7JE, UK.
Sci Rep. 2013;3:2708. doi: 10.1038/srep02708.
Resistive switching offers a promising route to universal electronic memory, potentially replacing current technologies that are approaching their fundamental limits. In many cases switching originates from the reversible formation and dissolution of nanometre-scale conductive filaments, which constrain the motion of electrons, leading to the quantisation of device conductance into multiples of the fundamental unit of conductance, G0. Such quantum effects appear when the constriction diameter approaches the Fermi wavelength of the electron in the medium - typically several nanometres. Here we find that the conductance of silicon-rich silica (SiOx) resistive switches is quantised in half-integer multiples of G0. In contrast to other resistive switching systems this quantisation is intrinsic to SiOx, and is not due to drift of metallic ions. Half-integer quantisation is explained in terms of the filament structure and formation mechanism, which allows us to distinguish between systems that exhibit integer and half-integer quantisation.
电阻开关为通用电子存储器提供了一条很有前景的途径,有可能取代目前已接近其基本极限的技术。在许多情况下,开关源于纳米级导电细丝的可逆形成和溶解,这些细丝限制了电子的运动,导致器件电导量子化为电导基本单位G0的倍数。当收缩直径接近介质中电子的费米波长(通常为几纳米)时,就会出现这种量子效应。在这里,我们发现富硅二氧化硅(SiOx)电阻开关的电导以G0的半整数倍进行量子化。与其他电阻开关系统不同,这种量子化是SiOx所固有的,并非由于金属离子的漂移。半整数量子化是根据细丝结构和形成机制来解释的,这使我们能够区分表现出整数和半整数量子化的系统。