Department of Epidemiology and Biostatistics, Helen Diller Family Comprehensive Cancer Center, Department of Medicine and Department of Urology, University of California, San Francisco, CA 94158, USA and Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA.
Bioinformatics. 2013 Dec 1;29(23):2995-3002. doi: 10.1093/bioinformatics/btt533. Epub 2013 Sep 18.
The translational landscape of diverse cellular systems remains largely uncharacterized. A detailed understanding of the control of gene expression at the level of messenger RNA translation is vital to elucidating a systems-level view of complex molecular programs in the cell. Establishing the degree to which such post-transcriptional regulation can mediate specific phenotypes is similarly critical to elucidating the molecular pathogenesis of diseases such as cancer. Recently, methods for massively parallel sequencing of ribosome-bound fragments of messenger RNA have begun to uncover genome-wide translational control at codon resolution. Despite its promise for deeply characterizing mammalian proteomes, few analytical methods exist for the comprehensive analysis of this paired RNA and ribosome data.
We describe the Babel framework, an analytical methodology for assessing the significance of changes in translational regulation within cells and between conditions. This approach facilitates the analysis of translation genome-wide while allowing statistically principled gene-level inference. Babel is based on an errors-in-variables regression model that uses the negative binomial distribution and draws inference using a parametric bootstrap approach. We demonstrate the operating characteristics of Babel on simulated data and use its gene-level inference to extend prior analyses significantly, discovering new translationally regulated modules under mammalian target of rapamycin (mTOR) pathway signaling control.
不同细胞系统的翻译景观在很大程度上仍未被描述。详细了解信使 RNA 翻译水平的基因表达调控对于阐明细胞中复杂分子程序的系统水平观点至关重要。确定这种转录后调控在多大程度上可以介导特定表型同样对于阐明癌症等疾病的分子发病机制至关重要。最近,用于大规模平行测序核糖体结合的信使 RNA 片段的方法已经开始在密码子分辨率上揭示全基因组的翻译控制。尽管它有潜力对哺乳动物蛋白质组进行深入描述,但几乎没有分析方法可以全面分析这种配对的 RNA 和核糖体数据。
我们描述了 Babel 框架,这是一种用于评估细胞内和条件之间翻译调控变化显著性的分析方法。这种方法可以在全基因组范围内进行翻译分析,同时允许进行基于统计学原理的基因水平推断。Babel 基于一个带有变量误差的回归模型,该模型使用负二项式分布,并使用参数自举方法进行推断。我们在模拟数据上演示了 Babel 的运行特性,并使用其基因水平推断显著扩展了先前的分析,发现了哺乳动物雷帕霉素靶蛋白(mTOR)信号通路控制下新的翻译调节模块。