Facultad de Ciencias de la Salud, Universidad Anáhuac, Avenida Universidad Anáhuac No. 46, Col. Lomas Anáhuac, 52786 Huixquilucan, MEX, Mexico ; Subdirección de Epidemiología Hospitalaria y Control de Calidad de la Atención Médica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Piso 4, Col. Sección XVI, DF, México 14000, Mexico.
Comput Math Methods Med. 2013;2013:213206. doi: 10.1155/2013/213206. Epub 2013 Aug 28.
A severe respiratory disease epidemic outbreak correlates with a high demand of specific supplies and specialized personnel to hold it back in a wide region or set of regions; these supplies would be beds, storage areas, hemodynamic monitors, and mechanical ventilators, as well as physicians, respiratory technicians, and specialized nurses. We describe an online cumulative sum based model named Overcrowd-Severe-Respiratory-Disease-Index based on the Modified Overcrowd Index that simultaneously monitors and informs the demand of those supplies and personnel in a healthcare network generating early warnings of severe respiratory disease epidemic outbreaks through the interpretation of such variables. A post hoc historical archive is generated, helping physicians in charge to improve the transit and future allocation of supplies in the entire hospital network during the outbreak. The model was thoroughly verified in a virtual scenario, generating multiple epidemic outbreaks in a 6-year span for a 13-hospital network. When it was superimposed over the H1N1 influenza outbreak census (2008-2010) taken by the National Institute of Medical Sciences and Nutrition Salvador Zubiran in Mexico City, it showed that it is an effective algorithm to notify early warnings of severe respiratory disease epidemic outbreaks with a minimal rate of false alerts.
一种严重呼吸系统传染病疫情的爆发与大量特定物资和专业人员的需求密切相关,这些物资和人员需要在广泛的地区或一组地区内控制疫情,包括病床、储存区、血流动力学监测器和呼吸机,以及医生、呼吸治疗师和专业护士。我们描述了一种基于在线累积和的模型,名为“过度拥挤-严重呼吸系统疾病指数”,该模型基于改良的过度拥挤指数,同时监测和报告医疗保健网络中这些物资和人员的需求,通过解释这些变量,提前预警严重呼吸系统传染病疫情的爆发。生成了一个事后历史档案,帮助负责的医生在疫情爆发期间改善整个医院网络的物资流转和未来分配。该模型在一个虚拟场景中进行了全面验证,在一个拥有 13 家医院的网络中,模拟了 6 年内的多次疫情爆发。当将其与墨西哥城国家医学科学和营养研究所萨尔瓦多·祖比兰(Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán)在 2008 年至 2010 年期间进行的 H1N1 流感疫情普查进行叠加时,结果表明,该模型是一种有效的算法,可以提前预警严重呼吸系统传染病疫情的爆发,且误报率很低。