Division of Health Sciences Informatics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):272-9. doi: 10.1136/amiajnl-2013-002151. Epub 2013 Sep 27.
Current readmission models use administrative data supplemented with clinical information. However, the majority of these result in poor predictive performance (area under the curve (AUC)<0.70).
To develop an administrative claim-based algorithm to predict 30-day readmission using standardized billing codes and basic admission characteristics available before discharge.
The algorithm works by exploiting high-dimensional information in administrative claims data and automatically selecting empirical risk factors. We applied the algorithm to index admissions in two types of hospitalized patient: (1) medical patients and (2) patients with chronic pancreatitis (CP). We trained the models on 26,091 medical admissions and 3218 CP admissions from The Johns Hopkins Hospital (a tertiary research medical center) and tested them on 16,194 medical admissions and 706 CP admissions from Johns Hopkins Bayview Medical Center (a hospital that serves a more general patient population), and vice versa. Performance metrics included AUC, sensitivity, specificity, positive predictive values, negative predictive values, and F-measure.
From a pool of up to 5665 International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) diagnoses, 599 ICD-9-CM procedures, and 1815 Current Procedural Terminology codes observed, the algorithm learned a model consisting of 18 attributes from the medical patient cohort and five attributes from the CP cohort. Within-site and across-site validations had an AUC≥0.75 for the medical patient cohort and an AUC≥0.65 for the CP cohort.
We have created an algorithm that is widely applicable to various patient cohorts and portable across institutions. The algorithm performed similarly to state-of-the-art readmission models that require clinical data.
目前的再入院模型使用行政数据,并辅以临床信息。然而,这些模型中的大多数预测性能较差(曲线下面积(AUC)<0.70)。
开发一种基于行政索赔的算法,使用标准化计费代码和出院前可用的基本入院特征来预测 30 天再入院。
该算法通过利用行政索赔数据中的高维信息并自动选择经验风险因素来工作。我们将该算法应用于两种住院患者的索引入院:(1)内科患者和(2)慢性胰腺炎(CP)患者。我们在约翰霍普金斯医院(一家三级研究医疗中心)的 26091 例内科入院和 3218 例 CP 入院中训练了模型,并在约翰霍普金斯湾景医疗中心(一家服务更一般患者群体的医院)的 16194 例内科入院和 706 例 CP 入院中对其进行了测试,反之亦然。性能指标包括 AUC、敏感性、特异性、阳性预测值、阴性预测值和 F 度量。
从多达 5665 个国际疾病分类,第 9 修订版,临床修正(ICD-9-CM)诊断、599 个 ICD-9-CM 程序和 1815 个当前程序术语代码中观察到,该算法从内科患者队列中学习了一个由 18 个属性组成的模型,从 CP 队列中学习了五个属性。内部和跨站点验证对内科患者队列的 AUC≥0.75,对 CP 队列的 AUC≥0.65。
我们已经创建了一种可广泛应用于各种患者群体并可在机构间移植的算法。该算法的性能与需要临床数据的最先进的再入院模型相似。