Suppr超能文献

染色体在纺锤体赤道上的位置由动粒蛋白和两极微管阵列调节。

Chromosome position at the spindle equator is regulated by chromokinesin and a bipolar microtubule array.

机构信息

1] Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan [2].

出版信息

Sci Rep. 2013 Sep 30;3:2808. doi: 10.1038/srep02808.

Abstract

The chromosome alignment is mediated by polar ejection and poleward forces acting on the chromosome arm and kinetochores, respectively. Although components of the motile machinery such as chromokinesin have been characterized, their dynamics within the spindle is poorly understood. Here we show that a quantum dot (Qdot) binding up to four Xenopus chromokinesin (Xkid) molecules behaved like a nanosize chromosome arm in the meiotic spindle, which is self-organized in cytoplasmic egg extracts. Xkid-Qdots travelled long distances along microtubules by changing several tracks, resulting in their accumulation toward and distribution around the metaphase plate. The analysis indicated that the direction of motion and velocity depend on the distribution of microtubule polarity within the spindle. Thus, this mechanism is governed by chromokinesin motors, which is dependent on symmetrical microtubule orientation that may allow chromosomes to maintain their position around the spindle equator until correct microtubule-kinetochore attachment is established.

摘要

染色体的排列是由两极射出和向极力分别作用于染色体臂和动粒而介导的。虽然已经鉴定出了运动机制的成分,如染色质动力蛋白,但它们在纺锤体中的动态特性还了解甚少。在这里,我们表明,多达四个 Xenopus chromokinesin (Xkid) 分子结合的量子点 (Qdot) 在卵细胞质提取物中自我组织的有丝分裂纺锤体中表现得像纳米大小的染色体臂。Xkid-Qdots 通过改变几个轨道沿着微管长距离移动,导致它们在向中期板聚集和在其周围分布。分析表明,运动的方向和速度取决于纺锤体内微管极性的分布。因此,这种机制受染色质动力蛋白控制,这取决于对称的微管取向,这可能允许染色体在纺锤体赤道周围保持其位置,直到建立正确的微管-动粒附着。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c7/3786301/c8f5519bd4be/srep02808-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验