Suppr超能文献

基于磁共振驱动的光相干弹性成像技术的生物组织微观流变特性研究。

Magnetomotive optical coherence elastography for microrheology of biological tissues.

机构信息

University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801bUniversity of Illinois at Urbana-Champaign, Department of Physics, Urbana, Illinois 61801.

出版信息

J Biomed Opt. 2013 Dec;18(12):121504. doi: 10.1117/1.JBO.18.12.121504.

Abstract

Optical coherence elastography (OCE) is an established paradigm for measuring biomechanical properties of tissues and cells noninvasively, in real time, and with high resolution. We present a different development of a spectral domain OCE technique that enables simultaneous measurements of multiple biomechanical parameters of biological tissues. Our approach extends the capabilities of magnetomotive OCE (MM-OCE), which utilizes iron oxide magnetic nanoparticles (MNPs) distributed and embedded in the specimens as transducers for inducing motion. Step-wise application of an external magnetic field results in displacements in the tissue specimens that are deduced from sensitive phase measurements made with the MM-OCE system. We analyzed freshly excised rabbit lung and muscle tissues. We observe that while they present some similarities, rabbit lung and muscle tissue displacements display characteristic differentiating features. Both tissue types undergo a fast initial displacement followed by a rapidly damped oscillation and the onset of creep. However, the damping is faster in muscle compared to lung tissue, while the creep is steeper in muscle. This approach has the potential to become a novel way of performing real-time measurements of biomechanical properties of tissues and to enable the development of different diagnostic and monitoring tools in biology and medicine.

摘要

光学相干弹性成像(OCE)是一种成熟的技术,可用于非侵入式、实时、高分辨率地测量组织和细胞的生物力学特性。我们提出了一种光谱域 OCE 技术的不同发展,该技术可同时测量生物组织的多个生物力学参数。我们的方法扩展了磁动弹性成像(MM-OCE)的功能,该技术利用分布和嵌入在标本中的氧化铁磁性纳米颗粒(MNPs)作为传感器来产生运动。逐步施加外部磁场会导致组织标本发生位移,这些位移可通过 MM-OCE 系统进行的敏感相位测量来推断。我们分析了新鲜离体的兔肺和肌肉组织。我们观察到,尽管它们具有一些相似之处,但兔肺和肌肉组织的位移表现出特征性的区别特征。两种组织类型都经历了快速的初始位移,随后是快速阻尼的振荡和蠕变的开始。然而,与肺组织相比,肌肉组织的阻尼更快,而肌肉组织的蠕变更陡峭。这种方法有可能成为实时测量组织生物力学特性的新方法,并为生物学和医学中的不同诊断和监测工具的发展提供可能。

相似文献

1
Magnetomotive optical coherence elastography for microrheology of biological tissues.
J Biomed Opt. 2013 Dec;18(12):121504. doi: 10.1117/1.JBO.18.12.121504.
2
Biomechanical sensing of magnetic nanoparticle hyperthermia-treated melanoma using magnetomotive optical coherence elastography.
Theranostics. 2021 Mar 23;11(12):5620-5633. doi: 10.7150/thno.55333. eCollection 2021.
4
Acoustomotive optical coherence elastography for measuring material mechanical properties.
Opt Lett. 2009 Oct 1;34(19):2894-6. doi: 10.1364/OL.34.002894.
5
Digital image correlation-based optical coherence elastography.
J Biomed Opt. 2013 Dec;18(12):121515. doi: 10.1117/1.JBO.18.12.121515.
6
Mechanical contrast in spectroscopic magnetomotive optical coherence elastography.
Phys Med Biol. 2015 Sep 7;60(17):6655-68. doi: 10.1088/0031-9155/60/17/6655. Epub 2015 Aug 13.
7
Optical coherence elastography and its applications for the biomechanical characterization of tissues.
J Biophotonics. 2023 Dec;16(12):e202300292. doi: 10.1002/jbio.202300292. Epub 2023 Oct 9.
8
Lorentz force optical coherence elastography.
J Biomed Opt. 2016 Sep 1;21(9):90502. doi: 10.1117/1.JBO.21.9.090502.
9
Analysis of mechanical contrast in optical coherence elastography.
J Biomed Opt. 2013 Dec;18(12):121508. doi: 10.1117/1.JBO.18.12.121508.
10
Phase-resolved acoustic radiation force optical coherence elastography.
J Biomed Opt. 2012 Nov;17(11):110505. doi: 10.1117/1.JBO.17.11.110505.

引用本文的文献

1
Magnetic particles in motion: magneto-motive imaging and sensing.
Theranostics. 2022 Jan 24;12(4):1783-1799. doi: 10.7150/thno.54056. eCollection 2022.
3
Biomechanical sensing of magnetic nanoparticle hyperthermia-treated melanoma using magnetomotive optical coherence elastography.
Theranostics. 2021 Mar 23;11(12):5620-5633. doi: 10.7150/thno.55333. eCollection 2021.
6
Optical elastography and tissue biomechanics.
J Biomed Opt. 2019 Nov;24(11):1-9. doi: 10.1117/1.JBO.24.11.110901.
7
Analysis of spatial resolution in phase-sensitive compression optical coherence elastography.
Biomed Opt Express. 2019 Feb 28;10(3):1496-1513. doi: 10.1364/BOE.10.001496. eCollection 2019 Mar 1.
8
Interstitial magnetic thermotherapy dosimetry based on shear wave magnetomotive optical coherence elastography.
Biomed Opt Express. 2019 Jan 14;10(2):539-551. doi: 10.1364/BOE.10.000539. eCollection 2019 Feb 1.
9
Effect of divalent ions and a polyphosphate on composition, structure, and stiffness of simulated drinking water biofilms.
NPJ Biofilms Microbiomes. 2018 Jul 18;4:15. doi: 10.1038/s41522-018-0058-1. eCollection 2018.
10
Optical coherence elastography - OCT at work in tissue biomechanics [Invited].
Biomed Opt Express. 2017 Jan 27;8(2):1172-1202. doi: 10.1364/BOE.8.001172. eCollection 2017 Feb 1.

本文引用的文献

1
Dynamics of Magnetic Nanoparticle-Based Contrast Agents in Tissues Tracked Using Magnetomotive Optical Coherence Tomography.
IEEE J Sel Top Quantum Electron. 2009 Oct 6;16(3):671-697. doi: 10.1109/JSTQE.2009.2029547.
2
Imaging and Elastometry of Blood Clots Using Magnetomotive Optical Coherence Tomography and Labeled Platelets.
IEEE J Sel Top Quantum Electron. 2011 Jul 21;18(3):1100-1109. doi: 10.1109/JSTQE.2011.2162580.
3
Acoustic waves in medical imaging and diagnostics.
Ultrasound Med Biol. 2013 Jul;39(7):1133-46. doi: 10.1016/j.ultrasmedbio.2013.02.006. Epub 2013 Apr 30.
4
Improved measurement of vibration amplitude in dynamic optical coherence elastography.
Biomed Opt Express. 2012 Dec 1;3(12):3138-52. doi: 10.1364/BOE.3.003138. Epub 2012 Nov 7.
6
Phase-resolved acoustic radiation force optical coherence elastography.
J Biomed Opt. 2012 Nov;17(11):110505. doi: 10.1117/1.JBO.17.11.110505.
7
Elastography of soft materials and tissues by holographic imaging of surface acoustic waves.
Opt Express. 2012 Aug 13;20(17):18887-97. doi: 10.1364/OE.20.018887.
8
Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms.
Biomed Opt Express. 2012 May 1;3(5):972-80. doi: 10.1364/BOE.3.000972. Epub 2012 Apr 16.
9
Acoustic Radiation Force Impulse (ARFI) Imaging: a Review.
Curr Med Imaging Rev. 2011 Nov 1;7(4):328-339. doi: 10.2174/157340511798038657.
10
DYNAMIC OPTICAL COHERENCE ELASTOGRAPHY: A REVIEW.
J Innov Opt Health Sci. 2010 Oct;3(4):221-233. doi: 10.1142/S1793545810001180.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验