Institute for Cell Engineering, and Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD (T.S.P., L.Z., J.S.H., J.A., E.T.Z.); Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, MD (I.B., R.G., C.M., G.L.); Department of Radiation Oncology (P.N., F.R.) and Department of Microbiology/Immunology (D.M., R.A.F.), University of Maryland School of Medicine, Baltimore, MD; Department of Cardiovascular Medicine (A.J.R., J.C.) and Institute for Stem Cell Biology and Regenerative Medicine (A.J.R., R.R.-P., J.C.), Stanford University, Palo Alto, CA; and Institute for Basic Biomedical Science at Johns Hopkins School of Medicine, Baltimore, MD (C.T.).
Circulation. 2014 Jan 21;129(3):359-72. doi: 10.1161/CIRCULATIONAHA.113.003000. Epub 2013 Oct 25.
The generation of vascular progenitors (VPs) from human induced pluripotent stem cells (hiPSCs) has great potential for treating vascular disorders such as ischemic retinopathies. However, long-term in vivo engraftment of hiPSC-derived VPs into the retina has not yet been reported. This goal may be limited by the low differentiation yield, greater senescence, and poor proliferation of hiPSC-derived vascular cells. To evaluate the potential of hiPSCs for treating ischemic retinopathies, we generated VPs from a repertoire of viral-integrated and nonintegrated fibroblast and cord blood (CB)-derived hiPSC lines and tested their capacity for homing and engrafting into murine retina in an ischemia-reperfusion model.
VPs from human embryonic stem cells and hiPSCs were generated with an optimized vascular differentiation system. Fluorescence-activated cell sorting purification of human embryoid body cells differentially expressing endothelial/pericytic markers identified a CD31(+)CD146(+) VP population with high vascular potency. Episomal CB-induced pluripotent stem cells (iPSCs) generated these VPs with higher efficiencies than fibroblast-iPSC. Moreover, in contrast to fibroblast-iPSC-VPs, CB-iPSC-VPs maintained expression signatures more comparable to human embryonic stem cell VPs, expressed higher levels of immature vascular markers, demonstrated less culture senescence and sensitivity to DNA damage, and possessed fewer transmitted reprogramming errors. Luciferase transgene-marked VPs from human embryonic stem cells, CB-iPSCs, and fibroblast-iPSCs were injected systemically or directly into the vitreous of retinal ischemia-reperfusion-injured adult nonobese diabetic-severe combined immunodeficient mice. Only human embryonic stem cell- and CB-iPSC-derived VPs reliably homed and engrafted into injured retinal capillaries, with incorporation into damaged vessels for up to 45 days.
VPs generated from CB-iPSCs possessed augmented capacity to home, integrate into, and repair damaged retinal vasculature.
从人诱导多能干细胞(hiPSCs)中生成血管祖细胞(VPs)在治疗血管疾病(如缺血性视网膜病变)方面具有巨大潜力。然而,hiPSC 衍生的 VPs 在视网膜中的长期体内移植尚未得到报道。这一目标可能受到以下因素的限制:hiPSC 衍生的血管细胞分化产量低、衰老更快、增殖能力差。为了评估 hiPSCs 治疗缺血性视网膜病变的潜力,我们从一系列病毒整合和非整合的成纤维细胞和脐血(CB)衍生的 hiPSC 系中生成 VPs,并在缺血再灌注模型中测试它们归巢和植入小鼠视网膜的能力。
我们使用优化的血管分化系统生成了来自人类胚胎干细胞和 hiPSC 的 VPs。通过荧光激活细胞分选对差异表达内皮/周细胞标志物的人胚体细胞进行纯化,鉴定出一种具有高血管潜能的 CD31(+)CD146(+)VP 群体。与成纤维细胞-iPSC 相比,episomal CB-iPSC 生成这些 VPs 的效率更高。此外,与成纤维细胞-iPSC-VPs 相比,CB-iPSC-VPs 保持了与人类胚胎干细胞 VPs 更相似的表达特征,表达了更高水平的不成熟血管标志物,表现出更低的培养衰老和对 DNA 损伤的敏感性,并且具有更少的传递重编程错误。来自人类胚胎干细胞、CB-iPSC 和成纤维细胞-iPSC 的 Luciferase 转基因标记的 VPs 被系统地或直接注射到视网膜缺血再灌注损伤的成年非肥胖糖尿病-严重联合免疫缺陷小鼠的玻璃体中。只有人类胚胎干细胞和 CB-iPSC 衍生的 VPs 能够可靠地归巢并植入受损的视网膜毛细血管,其整合到受损血管中的时间长达 45 天。
从 CB-iPSC 生成的 VPs 具有增强的归巢、整合和修复受损视网膜血管的能力。