Theil Elizabeth C
Children's Hospital Oakland Research Institute, and Department of Nutritional Science and Toxicology, University of California, Berkeley, USA.
Nanotechnol Percept. 2012;8(1):7-16. doi: 10.4024/n03th12a.ntp.08.01.
Ferritins are a family of large (10-12 nm diameter), self-assembled, protein cages that reversibly synthesize FeO•HO with up to 4500 iron atoms in a central cavity, 65 or 270 nm; the protein cages without mineral are sometimes called apoferritin. FeO•HO synthesis depends on controlled Fe entry though four or eight ion channels, directed transport to multiple Fe/O oxidoreductase ("ferroxidase") sites and, in the case of eukaryotic ferritins, guided nucleation and extrusion through channels connecting the active sites to the mineral growth cavity; passage of the diferric oxo catalytic products through the nucleation/extrusion channels allows the eukaryotic ferritin protein cage to influence order in the bulk mineral. Ferritin Feion channels also control reduction, dissolution, and exit of Fe from the mineral with gated pores on the cytoplasmic surface of ferritin cages. Found in anaerobic and aerobic organisms, from archaea and bacteria to higher plants and animals, ferritins are required for life. They provide metabolic iron concentrates for protein cofactor synthesis, and antioxidant activity after stress. Current applications of ferritin nanocages include clinical measurements of trace amounts released into serum, nutritional sources of concentrated iron, nanomaterial templates, biological delivery of nanosensors, and nanocatalysts. Future applications can exploit the nucleation/ extrusion channels and other metal-protein sites in ferritins.
铁蛋白是一类大型(直径10 - 12纳米)、自组装的蛋白质笼,可在中心腔(直径65或270纳米)中可逆地合成含有多达4500个铁原子的FeO•HO;没有矿物质的蛋白质笼有时被称为脱铁铁蛋白。FeO•HO的合成依赖于通过四个或八个离子通道控制铁的进入、定向运输到多个铁/氧氧化还原酶(“铁氧化酶”)位点,并且对于真核铁蛋白而言,还依赖于通过连接活性位点与矿物质生长腔的通道进行引导成核和挤出;二价铁氧催化产物通过成核/挤出通道,使得真核铁蛋白蛋白质笼能够影响块状矿物质的有序性。铁蛋白铁离子通道还通过铁蛋白笼细胞质表面的门控孔来控制铁从矿物质中的还原、溶解和排出。铁蛋白存在于从古细菌、细菌到高等植物和动物的厌氧和好氧生物中,是生命所必需的。它们为蛋白质辅因子合成提供代谢性铁浓缩物,并在应激后提供抗氧化活性。铁蛋白纳米笼目前的应用包括临床测量释放到血清中的痕量物质、浓缩铁的营养来源、纳米材料模板、纳米传感器的生物递送以及纳米催化剂。未来的应用可以利用铁蛋白中的成核/挤出通道和其他金属 - 蛋白质位点。