Suppr超能文献

对称性自适应微扰理论中包括耦合双激发在内的可计算性增益:自然轨道截断的 CCD+ST(CCD)色散。

Tractability gains in symmetry-adapted perturbation theory including coupled double excitations: CCD+ST(CCD) dispersion with natural orbital truncations.

机构信息

Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.

出版信息

J Chem Phys. 2013 Nov 7;139(17):174102. doi: 10.1063/1.4826520.

Abstract

This work focuses on efficient and accurate treatment of the intermolecular dispersion interaction using the CCD+ST(CCD) dispersion approach formulated by Williams et al. [J. Chem. Phys. 103, 4586 (1995)]. We apply natural orbital truncation techniques to the solution of the monomer coupled-cluster double (CCD) equations, yielding substantial accelerations in this computationally demanding portion of the SAPT2+(CCD), SAPT2+(3)(CCD), and SAPT2+3(CCD) analyses. It is shown that the wholly rate-limiting dimer-basis particle-particle ladder term can be computed in a reduced natural virtual space which is essentially the same size as the monomer-basis virtual space, with an error on the order of a few thousandths of 1 kcal mol(-1). Coupled with our existing natural orbital techniques for the perturbative triple excitation contributions [E. G. Hohenstein and C. D. Sherrill, J. Chem. Phys. 133, 104107 (2010)], this technique provides speedups of greater than an order of magnitude for the evaluation of the complete SAPT2+3(CCD) decomposition, with a total error of a few hundredths of 1 kcal mol(-1). The combined approach yields tractability gains of almost 2× in the system size, allowing for SAPT2+3(CCD)/aug-cc-pVTZ analysis to be performed for systems such as adenine-thymine for the first time. Natural orbital based SAPT2+3(CCD)/aug-cc-pVTZ results are presented for stacked and hydrogen-bonded configurations of uracil dimer and the adenine-thymine dimer.

摘要

这项工作侧重于使用 Williams 等人提出的 CCD+ST(CCD)色散方法有效地、准确地处理分子间色散相互作用。[J. Chem. Phys. 103, 4586 (1995)]。我们将自然轨道截断技术应用于单体耦合簇双(CCD)方程的求解中,在 SAPT2+(CCD)、SAPT2+(3)(CCD)和 SAPT2+3(CCD)分析中这一计算要求高的部分取得了显著的加速。结果表明,完全限速的二聚体基粒子-粒子梯级项可以在一个简化的自然虚拟空间中计算,该空间基本上与单体基虚拟空间大小相同,误差约为几千分之一的 1 kcal mol(-1)。结合我们现有的关于微扰三激发贡献的自然轨道技术[E. G. Hohenstein 和 C. D. Sherrill, J. Chem. Phys. 133, 104107 (2010)],该技术为完整 SAPT2+3(CCD)分解的评估提供了超过一个数量级的加速,总误差为几千分之一的 1 kcal mol(-1)。这种组合方法使系统大小的可处理性增益几乎达到 2 倍,允许首次对腺嘌呤-胸腺嘧啶等系统进行 SAPT2+3(CCD)/aug-cc-pVTZ 分析。给出了基于自然轨道的 SAPT2+3(CCD)/aug-cc-pVTZ 结果,用于尿嘧啶二聚体和腺嘌呤-胸腺嘧啶二聚体的堆积和氢键构型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验