Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
J Chem Phys. 2013 Nov 7;139(17):174102. doi: 10.1063/1.4826520.
This work focuses on efficient and accurate treatment of the intermolecular dispersion interaction using the CCD+ST(CCD) dispersion approach formulated by Williams et al. [J. Chem. Phys. 103, 4586 (1995)]. We apply natural orbital truncation techniques to the solution of the monomer coupled-cluster double (CCD) equations, yielding substantial accelerations in this computationally demanding portion of the SAPT2+(CCD), SAPT2+(3)(CCD), and SAPT2+3(CCD) analyses. It is shown that the wholly rate-limiting dimer-basis particle-particle ladder term can be computed in a reduced natural virtual space which is essentially the same size as the monomer-basis virtual space, with an error on the order of a few thousandths of 1 kcal mol(-1). Coupled with our existing natural orbital techniques for the perturbative triple excitation contributions [E. G. Hohenstein and C. D. Sherrill, J. Chem. Phys. 133, 104107 (2010)], this technique provides speedups of greater than an order of magnitude for the evaluation of the complete SAPT2+3(CCD) decomposition, with a total error of a few hundredths of 1 kcal mol(-1). The combined approach yields tractability gains of almost 2× in the system size, allowing for SAPT2+3(CCD)/aug-cc-pVTZ analysis to be performed for systems such as adenine-thymine for the first time. Natural orbital based SAPT2+3(CCD)/aug-cc-pVTZ results are presented for stacked and hydrogen-bonded configurations of uracil dimer and the adenine-thymine dimer.
这项工作侧重于使用 Williams 等人提出的 CCD+ST(CCD)色散方法有效地、准确地处理分子间色散相互作用。[J. Chem. Phys. 103, 4586 (1995)]。我们将自然轨道截断技术应用于单体耦合簇双(CCD)方程的求解中,在 SAPT2+(CCD)、SAPT2+(3)(CCD)和 SAPT2+3(CCD)分析中这一计算要求高的部分取得了显著的加速。结果表明,完全限速的二聚体基粒子-粒子梯级项可以在一个简化的自然虚拟空间中计算,该空间基本上与单体基虚拟空间大小相同,误差约为几千分之一的 1 kcal mol(-1)。结合我们现有的关于微扰三激发贡献的自然轨道技术[E. G. Hohenstein 和 C. D. Sherrill, J. Chem. Phys. 133, 104107 (2010)],该技术为完整 SAPT2+3(CCD)分解的评估提供了超过一个数量级的加速,总误差为几千分之一的 1 kcal mol(-1)。这种组合方法使系统大小的可处理性增益几乎达到 2 倍,允许首次对腺嘌呤-胸腺嘧啶等系统进行 SAPT2+3(CCD)/aug-cc-pVTZ 分析。给出了基于自然轨道的 SAPT2+3(CCD)/aug-cc-pVTZ 结果,用于尿嘧啶二聚体和腺嘌呤-胸腺嘧啶二聚体的堆积和氢键构型。