Baillie Charles A, VanZandbergen Christine, Tait Gordon, Hanish Asaf, Leas Brian, French Benjamin, Hanson C William, Behta Maryam, Umscheid Craig A
Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
J Hosp Med. 2013 Dec;8(12):689-95. doi: 10.1002/jhm.2106. Epub 2013 Nov 13.
Identification of patients at high risk for readmission is a crucial step toward improving care and reducing readmissions. The adoption of electronic health records (EHR) may prove important to strategies designed to risk stratify patients and introduce targeted interventions.
To develop and implement an automated prediction model integrated into our health system's EHR that identifies on admission patients at high risk for readmission within 30 days of discharge.
Retrospective and prospective cohort.
Healthcare system consisting of 3 hospitals.
All adult patients admitted from August 2009 to September 2012.
An automated readmission risk flag integrated into the EHR.
Thirty-day all-cause and 7-day unplanned healthcare system readmissions.
Using retrospective data, a single risk factor, ≥ 2 inpatient admissions in the past 12 months, was found to have the best balance of sensitivity (40%), positive predictive value (31%), and proportion of patients flagged (18%), with a C statistic of 0.62. Sensitivity (39%), positive predictive value (30%), proportion of patients flagged (18%), and C statistic (0.61) during the 12-month period after implementation of the risk flag were similar. There was no evidence for an effect of the intervention on 30-day all-cause and 7-day unplanned readmission rates in the 12-month period after implementation.
An automated prediction model was effectively integrated into an existing EHR and identified patients on admission who were at risk for readmission within 30 days of discharge.
识别再入院高风险患者是改善医疗服务并减少再入院情况的关键一步。采用电子健康记录(EHR)可能对旨在对患者进行风险分层并引入针对性干预措施的策略具有重要意义。
开发并实施一种集成到我们医疗系统电子健康记录中的自动预测模型,该模型可在患者出院后30天内识别出有再入院高风险的入院患者。
回顾性和前瞻性队列研究。
由3家医院组成的医疗系统。
2009年8月至2012年9月期间入院的所有成年患者。
将自动再入院风险标识集成到电子健康记录中。
30天全因再入院率和7天非计划医疗系统再入院率。
利用回顾性数据发现,单一风险因素,即过去12个月内≥2次住院,在敏感性(40%)、阳性预测值(31%)和被标识患者比例(18%)方面具有最佳平衡,C统计量为0.62。在实施风险标识后的12个月期间,敏感性(39%)、阳性预测值(30%)、被标识患者比例(18%)和C统计量(0.61)相似。没有证据表明该干预措施在实施后的12个月期间对30天全因再入院率和7天非计划再入院率有影响。
一个自动预测模型有效地集成到了现有的电子健康记录中,并识别出了出院后30天内有再入院风险的入院患者。