Suppr超能文献

再入院风险标识:利用电子健康记录自动识别有30天再入院风险的患者。

The readmission risk flag: using the electronic health record to automatically identify patients at risk for 30-day readmission.

作者信息

Baillie Charles A, VanZandbergen Christine, Tait Gordon, Hanish Asaf, Leas Brian, French Benjamin, Hanson C William, Behta Maryam, Umscheid Craig A

机构信息

Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.

出版信息

J Hosp Med. 2013 Dec;8(12):689-95. doi: 10.1002/jhm.2106. Epub 2013 Nov 13.

Abstract

BACKGROUND

Identification of patients at high risk for readmission is a crucial step toward improving care and reducing readmissions. The adoption of electronic health records (EHR) may prove important to strategies designed to risk stratify patients and introduce targeted interventions.

OBJECTIVE

To develop and implement an automated prediction model integrated into our health system's EHR that identifies on admission patients at high risk for readmission within 30 days of discharge.

DESIGN

Retrospective and prospective cohort.

SETTING

Healthcare system consisting of 3 hospitals.

PATIENTS

All adult patients admitted from August 2009 to September 2012.

INTERVENTIONS

An automated readmission risk flag integrated into the EHR.

MEASURES

Thirty-day all-cause and 7-day unplanned healthcare system readmissions.

RESULTS

Using retrospective data, a single risk factor, ≥ 2 inpatient admissions in the past 12 months, was found to have the best balance of sensitivity (40%), positive predictive value (31%), and proportion of patients flagged (18%), with a C statistic of 0.62. Sensitivity (39%), positive predictive value (30%), proportion of patients flagged (18%), and C statistic (0.61) during the 12-month period after implementation of the risk flag were similar. There was no evidence for an effect of the intervention on 30-day all-cause and 7-day unplanned readmission rates in the 12-month period after implementation.

CONCLUSIONS

An automated prediction model was effectively integrated into an existing EHR and identified patients on admission who were at risk for readmission within 30 days of discharge.

摘要

背景

识别再入院高风险患者是改善医疗服务并减少再入院情况的关键一步。采用电子健康记录(EHR)可能对旨在对患者进行风险分层并引入针对性干预措施的策略具有重要意义。

目的

开发并实施一种集成到我们医疗系统电子健康记录中的自动预测模型,该模型可在患者出院后30天内识别出有再入院高风险的入院患者。

设计

回顾性和前瞻性队列研究。

设置

由3家医院组成的医疗系统。

患者

2009年8月至2012年9月期间入院的所有成年患者。

干预措施

将自动再入院风险标识集成到电子健康记录中。

测量指标

30天全因再入院率和7天非计划医疗系统再入院率。

结果

利用回顾性数据发现,单一风险因素,即过去12个月内≥2次住院,在敏感性(40%)、阳性预测值(31%)和被标识患者比例(18%)方面具有最佳平衡,C统计量为0.62。在实施风险标识后的12个月期间,敏感性(39%)、阳性预测值(30%)、被标识患者比例(18%)和C统计量(0.61)相似。没有证据表明该干预措施在实施后的12个月期间对30天全因再入院率和7天非计划再入院率有影响。

结论

一个自动预测模型有效地集成到了现有的电子健康记录中,并识别出了出院后30天内有再入院风险的入院患者。

相似文献

2
Predicting 30-day readmissions with preadmission electronic health record data.
Med Care. 2015 Mar;53(3):283-9. doi: 10.1097/MLR.0000000000000315.
6
Inflammatory Bowel Disease: Predictors and Causes of Early and Late Hospital Readmissions.
Inflamm Bowel Dis. 2017 Oct;23(10):1832-1839. doi: 10.1097/MIB.0000000000001242.
8
Avoidable readmission in Hong Kong--system, clinician, patient or social factor?
BMC Health Serv Res. 2010 Nov 17;10:311. doi: 10.1186/1472-6963-10-311.
9
Derivation and validation of a hospital all-cause 30-day readmission index.
Am J Health Syst Pharm. 2019 Mar 19;76(7):436-443. doi: 10.1093/ajhp/zxy085.
10
Identifying patients at highest-risk: the best timing to apply a readmission predictive model.
BMC Med Inform Decis Mak. 2019 Jun 26;19(1):118. doi: 10.1186/s12911-019-0836-6.

引用本文的文献

1
Leveraging deep survival models to predict quality of care risk in diverse hospital readmissions.
Sci Rep. 2023 Jun 28;13(1):10479. doi: 10.1038/s41598-023-37477-3.
2
Predictive modeling for COVID-19 readmission risk using machine learning algorithms.
BMC Med Inform Decis Mak. 2022 May 20;22(1):139. doi: 10.1186/s12911-022-01880-z.
4
Predicting hospital readmission risk in patients with COVID-19: A machine learning approach.
Inform Med Unlocked. 2022;30:100908. doi: 10.1016/j.imu.2022.100908. Epub 2022 Mar 8.
5
Pharmacogenomic Clinical Decision Support: A Review, How-to Guide, and Future Vision.
Clin Pharmacol Ther. 2022 Jul;112(1):44-57. doi: 10.1002/cpt.2387. Epub 2021 Aug 29.
6
Published models that predict hospital readmission: a critical appraisal.
BMJ Open. 2021 Aug 3;11(8):e044964. doi: 10.1136/bmjopen-2020-044964.
7
Effect of a Real-Time Risk Score on 30-day Readmission Reduction in Singapore.
Appl Clin Inform. 2021 Mar;12(2):372-382. doi: 10.1055/s-0041-1726422. Epub 2021 May 19.
8
Exploiting temporal relationships in the prediction of mortality.
Lancet Digit Health. 2020 Apr;2(4):e152-e153. doi: 10.1016/S2589-7500(20)30056-X. Epub 2020 Mar 12.
9
10
Clinical Implementation of Predictive Models Embedded within Electronic Health Record Systems: A Systematic Review.
Informatics (MDPI). 2020 Sep;7(3). doi: 10.3390/informatics7030025. Epub 2020 Jul 25.

本文引用的文献

1
Identifying patients at increased risk for unplanned readmission.
Med Care. 2013 Sep;51(9):761-6. doi: 10.1097/MLR.0b013e3182a0f492.
2
Allocating scarce resources in real-time to reduce heart failure readmissions: a prospective, controlled study.
BMJ Qual Saf. 2013 Dec;22(12):998-1005. doi: 10.1136/bmjqs-2013-001901. Epub 2013 Jul 31.
3
Thirty-day readmissions--truth and consequences.
N Engl J Med. 2012 Apr 12;366(15):1366-9. doi: 10.1056/NEJMp1201598. Epub 2012 Mar 28.
4
Risk prediction models for hospital readmission: a systematic review.
JAMA. 2011 Oct 19;306(15):1688-98. doi: 10.1001/jama.2011.1515.
5
Interventions to reduce 30-day rehospitalization: a systematic review.
Ann Intern Med. 2011 Oct 18;155(8):520-8. doi: 10.7326/0003-4819-155-8-201110180-00008.
6
The care span: The importance of transitional care in achieving health reform.
Health Aff (Millwood). 2011 Apr;30(4):746-54. doi: 10.1377/hlthaff.2011.0041.
7
Proportion of hospital readmissions deemed avoidable: a systematic review.
CMAJ. 2011 Apr 19;183(7):E391-402. doi: 10.1503/cmaj.101860. Epub 2011 Mar 28.
8
Redefining readmission risk factors for general medicine patients.
J Hosp Med. 2011 Feb;6(2):54-60. doi: 10.1002/jhm.805. Epub 2010 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验