Suppr超能文献

Exploiting temporal relationships in the prediction of mortality.

作者信息

Cosgriff Christopher V, Celi Leo Anthony

机构信息

MIT Critical Data, Laboratory for Computational Physiology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.

MIT Critical Data, Laboratory for Computational Physiology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Pulmonary Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.

出版信息

Lancet Digit Health. 2020 Apr;2(4):e152-e153. doi: 10.1016/S2589-7500(20)30056-X. Epub 2020 Mar 12.

Abstract
摘要

相似文献

1
Exploiting temporal relationships in the prediction of mortality.
Lancet Digit Health. 2020 Apr;2(4):e152-e153. doi: 10.1016/S2589-7500(20)30056-X. Epub 2020 Mar 12.
3
Utilizing imbalanced electronic health records to predict acute kidney injury by ensemble learning and time series model.
BMC Med Inform Decis Mak. 2020 Sep 21;20(1):238. doi: 10.1186/s12911-020-01245-4.
4
ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU.
J Biomed Inform. 2019 Oct;98:103269. doi: 10.1016/j.jbi.2019.103269. Epub 2019 Aug 17.
6
Representation learning for clinical time series prediction tasks in electronic health records.
BMC Med Inform Decis Mak. 2019 Dec 17;19(Suppl 8):259. doi: 10.1186/s12911-019-0985-7.
7
The Dependence of Machine Learning on Electronic Medical Record Quality.
AMIA Annu Symp Proc. 2018 Apr 16;2017:883-891. eCollection 2017.
8
Learning from heterogeneous temporal data in electronic health records.
J Biomed Inform. 2017 Jan;65:105-119. doi: 10.1016/j.jbi.2016.11.006. Epub 2016 Dec 2.

引用本文的文献

1
XML-GBM lung: An explainable machine learning-based application for the diagnosis of lung cancer.
J Pathol Inform. 2023 Mar 24;14:100307. doi: 10.1016/j.jpi.2023.100307. eCollection 2023.

本文引用的文献

2
Deep learning for risk assessment: all about automatic feature extraction.
Br J Anaesth. 2020 Feb;124(2):131-133. doi: 10.1016/j.bja.2019.10.017. Epub 2019 Dec 6.
3
Deep-learning model for predicting 30-day postoperative mortality.
Br J Anaesth. 2019 Nov;123(5):688-695. doi: 10.1016/j.bja.2019.07.025. Epub 2019 Sep 23.
5
The reproducibility crisis in the age of digital medicine.
NPJ Digit Med. 2019 Jan 29;2:2. doi: 10.1038/s41746-019-0079-z. eCollection 2019.
6
Electronic health record-based clinical decision support alert for severe sepsis: a randomised evaluation.
BMJ Qual Saf. 2019 Sep;28(9):762-768. doi: 10.1136/bmjqs-2018-008765. Epub 2019 Mar 14.
7
Minimal Impact of Implemented Early Warning Score and Best Practice Alert for Patient Deterioration.
Crit Care Med. 2019 Jan;47(1):49-55. doi: 10.1097/CCM.0000000000003439.
8
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement.
Eur Urol. 2015 Jun;67(6):1142-1151. doi: 10.1016/j.eururo.2014.11.025. Epub 2015 Jan 5.
10
"Big data" in the intensive care unit. Closing the data loop.
Am J Respir Crit Care Med. 2013 Jun 1;187(11):1157-60. doi: 10.1164/rccm.201212-2311ED.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验