1] International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia [2] Kurchatov Institute National Research Center, Moscow, Russia [3] Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region, 1430125 Russia.
Sci Rep. 2013 Nov 20;3:3265. doi: 10.1038/srep03265.
Seeing the big picture of functional responses within large neural networks in a freely functioning brain is crucial for understanding the cellular mechanisms behind the higher nervous activity, including the most complex brain functions, such as cognition and memory. As a breakthrough toward meeting this challenge, implantable fiber-optic interfaces integrating advanced optogenetic technologies and cutting-edge fiber-optic solutions have been demonstrated, enabling a long-term optogenetic manipulation of neural circuits in freely moving mice. Here, we show that a specifically designed implantable fiber-optic interface provides a powerful tool for parallel long-term optical interrogation of distinctly separate, functionally different sites in the brain of freely moving mice. This interface allows the same groups of neurons lying deeply in the brain of a freely behaving mouse to be reproducibly accessed and optically interrogated over many weeks, providing a long-term dynamic detection of genome activity in response to a broad variety of pharmacological and physiological stimuli.
在自由活动的大脑中观察大型神经网络中功能反应的全貌对于理解高级神经活动背后的细胞机制至关重要,包括最复杂的大脑功能,如认知和记忆。作为应对这一挑战的突破,已经展示了集成先进光遗传学技术和尖端光纤解决方案的可植入光纤接口,从而能够在自由移动的小鼠中对神经回路进行长期的光遗传学操作。在这里,我们展示了一种专门设计的可植入光纤接口,为自由移动的小鼠大脑中功能不同的明显分离的不同部位进行并行长期光学检测提供了强大的工具。该接口允许在许多周内重复访问和光学检测自由活动小鼠大脑深处的相同神经元群,并对基因组活动进行长期动态检测,以响应各种药理学和生理学刺激。