Suppr超能文献

相似文献

4
An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile.
Appl Microbiol Biotechnol. 2012 Nov;96(4):1079-91. doi: 10.1007/s00253-012-4418-0. Epub 2012 Oct 3.
6
Transcriptome changes in adaptive evolution of xylose-fermenting industrial Saccharomyces cerevisiae strains with δ-integration of different xylA genes.
Appl Microbiol Biotechnol. 2017 Oct;101(20):7741-7753. doi: 10.1007/s00253-017-8494-z. Epub 2017 Sep 13.
8
Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.
Appl Environ Microbiol. 2012 Aug;78(16):5708-16. doi: 10.1128/AEM.01419-12. Epub 2012 Jun 8.

引用本文的文献

1
Engineering a xylose fermenting yeast for lignocellulosic ethanol production.
Nat Chem Biol. 2025 Mar;21(3):443-450. doi: 10.1038/s41589-024-01771-6. Epub 2024 Nov 4.
3
Oxygenation influences xylose fermentation and gene expression in the yeast genera Spathaspora and Scheffersomyces.
Biotechnol Biofuels Bioprod. 2024 Feb 7;17(1):20. doi: 10.1186/s13068-024-02467-8.
4
Integration of metabolism and regulation reveals rapid adaptability to growth on non-native substrates.
Cell Chem Biol. 2023 Sep 21;30(9):1135-1143.e5. doi: 10.1016/j.chembiol.2023.06.009. Epub 2023 Jul 7.
5
Microbial adaptive evolution.
J Ind Microbiol Biotechnol. 2022 Apr 14;49(2). doi: 10.1093/jimb/kuab076.
6
Engineering for the Production of Xylonic Acid from Sugarcane Bagasse Hydrolysate.
Microorganisms. 2021 Jun 24;9(7):1372. doi: 10.3390/microorganisms9071372.
7
Real-time monitoring of ethanol production during NRRL Y-7124 alcoholic fermentation using transflection near infrared spectroscopy.
Eng Life Sci. 2018 Jun 19;18(9):643-653. doi: 10.1002/elsc.201700189. eCollection 2018 Sep.
8
Engineering of Pentose Transport in for Biotechnological Applications.
Front Bioeng Biotechnol. 2020 Jan 29;7:464. doi: 10.3389/fbioe.2019.00464. eCollection 2019.
9
Improved simultaneous co-fermentation of glucose and xylose by for efficient lignocellulosic biorefinery.
Biotechnol Biofuels. 2020 Jan 22;13:12. doi: 10.1186/s13068-019-1641-2. eCollection 2020.
10
PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production.
PLoS One. 2019 May 21;14(5):e0212389. doi: 10.1371/journal.pone.0212389. eCollection 2019.

本文引用的文献

2
An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile.
Appl Microbiol Biotechnol. 2012 Nov;96(4):1079-91. doi: 10.1007/s00253-012-4418-0. Epub 2012 Oct 3.
7
Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol.
Trends Biotechnol. 2012 May;30(5):274-82. doi: 10.1016/j.tibtech.2012.01.005. Epub 2012 Feb 20.
8
Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae.
Metab Eng. 2012 Jan;14(1):9-18. doi: 10.1016/j.ymben.2011.12.001. Epub 2011 Dec 10.
9
Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae.
Metab Eng. 2011 Sep;13(5):508-17. doi: 10.1016/j.ymben.2011.05.005. Epub 2011 May 27.
10
Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids.
Bioresour Technol. 2011 Aug;102(16):7486-93. doi: 10.1016/j.biortech.2011.05.008. Epub 2011 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验