Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands.
Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Biophys J. 2013 Dec 17;105(12):2743-50. doi: 10.1016/j.bpj.2013.11.016.
Dendritic spines are the primary postsynaptic sites of excitatory neurotransmission in the brain. They exhibit a remarkable morphological variety, ranging from thin protrusions, to stubby shapes, to bulbous mushroom shapes. The remodeling of spines is thought to regulate the strength of the synaptic connection, which depends vitally on the number and the spatial distribution of AMPA-type glutamate receptors (AMPARs). We present numerical and analytical analyses demonstrating that this shape strongly affects AMPAR diffusion. We report a pronounced suppression of the receptor exit rate out of spines with decreasing neck radius. Thus, mushroomlike spines become highly effective at retaining receptors in the spine head. Moreover, we show that the postsynaptic density further enhances receptor trapping, particularly in mushroomlike spines local exocytosis in the spine head, in contrast to release at the base, provides rapid and specific regulatory control of AMPAR concentration at synapses.
树突棘是大脑中兴奋性神经递质传递的主要突触后位点。它们表现出显著的形态多样性,从细突、短粗形状到球状蘑菇形状都有。刺的重塑被认为调节突触连接的强度,这取决于 AMPA 型谷氨酸受体 (AMPAR) 的数量和空间分布。我们提出了数值和分析分析,表明这种形状强烈影响 AMPAR 的扩散。我们报告了一个明显的抑制,受体离开率出的棘随着颈部半径的减小。因此,蘑菇状的刺变得非常有效地保持受体在棘头部。此外,我们表明,突触后密度进一步增强了受体的捕获,特别是在蘑菇状的刺头部局部胞吐作用,与基底的释放相反,提供了 AMPAR 浓度在突触的快速和特定的调节控制。