Towse Benjamin W, Barry Caswell, Bush Daniel, Burgess Neil
UCL Institute of Behavioural Neuroscience, University College London, , London WC1N 3AR, UK.
Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20130290. doi: 10.1098/rstb.2013.0290. Print 2014 Feb 5.
We examined the accuracy with which the location of an agent moving within an environment could be decoded from the simulated firing of systems of grid cells. Grid cells were modelled with Poisson spiking dynamics and organized into multiple 'modules' of cells, with firing patterns of similar spatial scale within modules and a wide range of spatial scales across modules. The number of grid cells per module, the spatial scaling factor between modules and the size of the environment were varied. Errors in decoded location can take two forms: small errors of precision and larger errors resulting from ambiguity in decoding periodic firing patterns. With enough cells per module (e.g. eight modules of 100 cells each) grid systems are highly robust to ambiguity errors, even over ranges much larger than the largest grid scale (e.g. over a 500 m range when the maximum grid scale is 264 cm). Results did not depend strongly on the precise organization of scales across modules (geometric, co-prime or random). However, independent spatial noise across modules, which would occur if modules receive independent spatial inputs and might increase with spatial uncertainty, dramatically degrades the performance of the grid system. This effect of spatial uncertainty can be mitigated by uniform expansion of grid scales. Thus, in the realistic regimes simulated here, the optimal overall scale for a grid system represents a trade-off between minimizing spatial uncertainty (requiring large scales) and maximizing precision (requiring small scales). Within this view, the temporary expansion of grid scales observed in novel environments may be an optimal response to increased spatial uncertainty induced by the unfamiliarity of the available spatial cues.
我们研究了能否从网格细胞系统的模拟放电中解码出在环境中移动的智能体的位置,以及解码的准确性。网格细胞采用泊松脉冲发放动力学进行建模,并组织成多个细胞“模块”,模块内具有相似空间尺度的发放模式,而各模块之间的空间尺度范围较广。每个模块中网格细胞的数量、模块之间的空间缩放因子以及环境的大小都有所变化。解码位置的误差有两种形式:精度上的小误差和由于对周期性发放模式解码时的模糊性导致的较大误差。每个模块有足够数量的细胞(例如,八个模块,每个模块100个细胞)时,即使在比最大网格尺度大得多的范围内(例如,最大网格尺度为264厘米时,在500米的范围内),网格系统对模糊性误差也具有高度鲁棒性。结果并不强烈依赖于模块间尺度的精确组织方式(几何、互质或随机)。然而,如果模块接收独立的空间输入,并且可能随着空间不确定性增加而出现的跨模块独立空间噪声,会显著降低网格系统的性能。这种空间不确定性的影响可以通过均匀扩大网格尺度来减轻。因此,在此处模拟的现实情况下,网格系统的最优整体尺度代表了在最小化空间不确定性(需要大尺度)和最大化精度(需要小尺度)之间的权衡。从这个角度来看,在新环境中观察到的网格尺度的临时扩大,可能是对由可用空间线索的不熟悉所导致的空间不确定性增加的一种最优反应。