Suppr超能文献

帕金森病中的非线性动力学

Non-linear dynamics in parkinsonism.

作者信息

Darbin Olivier, Adams Elizabeth, Martino Anthony, Naritoku Leslie, Dees Daniel, Naritoku Dean

机构信息

Department of Neurology, University of South Alabama , Mobile, AL , USA ; Division of System Neurophysiology, National Institute for Physiological Sciences , Okazaki , Japan.

Department of Speech Pathology and Audiology, University of South Alabama , Mobile, AL , USA.

出版信息

Front Neurol. 2013 Dec 25;4:211. doi: 10.3389/fneur.2013.00211.

Abstract

Over the last 30 years, the functions (and dysfunctions) of the sensory-motor circuitry have been mostly conceptualized using linear modelizations which have resulted in two main models: the "rate hypothesis" and the "oscillatory hypothesis." In these two models, the basal ganglia data stream is envisaged as a random temporal combination of independent simple patterns issued from its probability distribution of interval interspikes or its spectrum of frequencies respectively. More recently, non-linear analyses have been introduced in the modelization of motor circuitry activities, and they have provided evidences that complex temporal organizations exist in basal ganglia neuronal activities. Regarding movement disorders, these complex temporal organizations in the basal ganglia data stream differ between conditions (i.e., parkinsonism, dyskinesia, healthy control) and are responsive to treatments (i.e., l-DOPA, deep brain stimulation). A body of evidence has reported that basal ganglia neuronal entropy (a marker for complexity/irregularity in time series) is higher in hypokinetic state. In line with these findings, an entropy-based model has been recently formulated to introduce basal ganglia entropy as a marker for the alteration of motor processing and a factor of motor inhibition. Importantly, non-linear features have also been identified as a marker of condition and/or treatment effects in brain global signals (EEG), muscular activities (EMG), or kinetic of motor symptoms (tremor, gait) of patients with movement disorders. It is therefore warranted that the non-linear dynamics of motor circuitry will contribute to a better understanding of the neuronal dysfunctions underlying the spectrum of parkinsonian motor symptoms including tremor, rigidity, and hypokinesia.

摘要

在过去30年里,感觉运动回路的功能(以及功能失调)大多是通过线性模型来概念化的,这产生了两个主要模型:“速率假说”和“振荡假说”。在这两个模型中,基底神经节数据流分别被设想为从其峰间间隔的概率分布或频率谱发出的独立简单模式的随机时间组合。最近,非线性分析已被引入运动回路活动的建模中,并且它们提供了证据表明基底神经节神经元活动中存在复杂的时间组织。关于运动障碍,基底神经节数据流中的这些复杂时间组织在不同条件(即帕金森病、运动障碍、健康对照)之间存在差异,并且对治疗(即左旋多巴、深部脑刺激)有反应。大量证据表明,在运动减退状态下基底神经节神经元熵(时间序列中复杂性/不规则性的标志物)更高。与这些发现一致,最近已经制定了一种基于熵的模型,将基底神经节熵作为运动处理改变的标志物和运动抑制的一个因素引入。重要的是,非线性特征也已被确定为运动障碍患者大脑全局信号(脑电图)、肌肉活动(肌电图)或运动症状(震颤、步态)动力学中病情和/或治疗效果的标志物。因此,有理由认为运动回路的非线性动力学将有助于更好地理解包括震颤、僵硬和运动减退在内的帕金森运动症状谱背后的神经元功能障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e321/3872328/3ae5fcbf3445/fneur-04-00211-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验