Suppr超能文献

用于感染伤口部位的皮肤组织工程:可生物降解聚乳酸纳米纤维及在角质形成细胞与金黄色葡萄球菌三维共培养系统中评估的银离子释放新方法

Skin tissue engineering for the infected wound site: biodegradable PLA nanofibers and a novel approach for silver ion release evaluated in a 3D coculture system of keratinocytes and Staphylococcus aureus.

作者信息

Mohiti-Asli Mahsa, Pourdeyhimi Behnam, Loboa Elizabeth G

机构信息

1 Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University , Raleigh, North Carolina.

出版信息

Tissue Eng Part C Methods. 2014 Oct;20(10):790-7. doi: 10.1089/ten.TEC.2013.0458. Epub 2014 Mar 21.

Abstract

Wound infection presents a challenging and growing problem. With the increased prevalence and growth of multidrug-resistant bacteria, there is a mounting need to reduce and eliminate wound infections using methodologies that limit the ability of bacteria to evolve into further drug-resistant strains. A well-known strategy for combating bacterial infection and preventing wound sepsis is through the delivery of silver ions to the wound site. High surface area silver nanoparticles (AgNPs) allowing extensive silver ion release have therefore been explored in different wound dressings and/or skin substitutes. However, it has been recently shown that AgNPs can penetrate into the stratum corneum of skin or diffuse into the cellular plasma membrane, and may interfere with a variety of cellular mechanisms. The goal of this study was to introduce and evaluate a new type of high surface area metallic silver in the form of highly porous silver microparticles (AgMPs). Polylactic acid (PLA) nanofibers were successfully loaded with either highly porous AgMPs or AgNPs and the antimicrobial efficacy and cytotoxicity of the two silver-based wound dressings were assessed and compared. To better mimic the physiological environment in vivo where both human cells and bacteria are present, a novel coculture system combining human epidermal keratinocytes and Staphylococcus aureus bacteria was designed to simultaneously evaluate human skin cell cytotoxicity with antimicrobial efficacy in a three-dimensional environment. We found that highly porous AgMPs could be successfully incorporated in nanofibrous wound dressings, and exhibited comparable antimicrobial efficacy and cytotoxicity to AgNPs. Further, PLA nanofibers containing highly porous AgMPs exhibited steady silver ion release, at a greater rate of release, than nanofibers containing AgNPs. The replacement of AgNPs with the newly introduced AgMPs overcomes concerns regarding the use of nanoparticles and holds great promise as skin substitutes or wound dressings for infected wound sites.

摘要

伤口感染是一个具有挑战性且日益严重的问题。随着多重耐药菌的患病率上升和增多,越来越需要采用能限制细菌演变成更具耐药性菌株能力的方法来减少和消除伤口感染。一种对抗细菌感染和预防伤口脓毒症的知名策略是将银离子输送到伤口部位。因此,具有高表面积、能大量释放银离子的银纳米颗粒(AgNPs)已在不同的伤口敷料和/或皮肤替代物中得到探索。然而,最近有研究表明,AgNPs可穿透皮肤角质层或扩散到细胞质膜中,并可能干扰多种细胞机制。本研究的目的是引入并评估一种新型的高表面积金属银,其形式为高度多孔的银微粒(AgMPs)。聚乳酸(PLA)纳米纤维成功负载了高度多孔的AgMPs或AgNPs,并评估和比较了这两种基于银的伤口敷料的抗菌效果和细胞毒性。为了更好地模拟体内同时存在人类细胞和细菌的生理环境,设计了一种将人表皮角质形成细胞和金黄色葡萄球菌相结合的新型共培养系统,以在三维环境中同时评估人类皮肤细胞毒性和抗菌效果。我们发现,高度多孔的AgMPs能够成功地掺入纳米纤维伤口敷料中,并且与AgNPs表现出相当的抗菌效果和细胞毒性。此外,含有高度多孔AgMPs的PLA纳米纤维比含有AgNPs的纳米纤维表现出更稳定的银离子释放,且释放速率更高。用新引入的AgMPs替代AgNPs消除了对纳米颗粒使用的担忧,并作为感染伤口部位的皮肤替代物或伤口敷料具有巨大的前景。

相似文献

2
Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles.
Acta Biomater. 2014 May;10(5):2096-104. doi: 10.1016/j.actbio.2013.12.024. Epub 2013 Dec 21.
3
Electrospun Poly(L-Lactic Acid)-co-Poly(ϵ-Caprolactone) Nanofibres Containing Silver Nanoparticles for Skin-Tissue Engineering.
J Biomater Sci Polym Ed. 2012;23(18):2337-52. doi: 10.1163/156856211X617399. Epub 2012 May 11.
4
Electrospun functionalized polyaniline copolymer-based nanofibers with potential application in tissue engineering.
Macromol Biosci. 2010 Dec 8;10(12):1424-31. doi: 10.1002/mabi.201000237. Epub 2010 Sep 14.
5
Antimicrobial Wound Dressing Containing Silver Sulfadiazine With High Biocompatibility: In Vitro Study.
Artif Organs. 2016 Aug;40(8):765-73. doi: 10.1111/aor.12682. Epub 2016 Apr 20.
6
Incorporating silver nanoparticles into electrospun nanofibers of casein/polyvinyl alcohol to develop scaffolds for tissue engineering.
Int J Biol Macromol. 2024 May;267(Pt 2):131501. doi: 10.1016/j.ijbiomac.2024.131501. Epub 2024 Apr 16.
7
A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation.
Int J Pharm. 2019 Jun 10;564:350-358. doi: 10.1016/j.ijpharm.2019.04.068. Epub 2019 Apr 24.
8
Novel antibacterial nanofibrous PLLA scaffolds.
J Control Release. 2010 Sep 15;146(3):363-9. doi: 10.1016/j.jconrel.2010.05.035. Epub 2010 Jun 4.
9
Tissue engineered plant extracts as nanofibrous wound dressing.
Biomaterials. 2013 Jan;34(3):724-34. doi: 10.1016/j.biomaterials.2012.10.026. Epub 2012 Oct 27.

引用本文的文献

1
Medical applications and prospects of polylactic acid materials.
iScience. 2024 Dec 1;27(12):111512. doi: 10.1016/j.isci.2024.111512. eCollection 2024 Dec 20.
2
Nanoparticles Perspective in Skin Tissue Engineering: Current Concepts and Future Outlook.
Curr Stem Cell Res Ther. 2025;20(1):2-8. doi: 10.2174/011574888X291345240110102648.
3
3D printed drug loaded nanomaterials for wound healing applications.
Regen Ther. 2023 Sep 4;24:361-376. doi: 10.1016/j.reth.2023.08.007. eCollection 2023 Dec.
5
6
Poly (Lactic Acid) membrane and Sedum dendroideum extract favors the repair of burns in rats.
Acta Cir Bras. 2020;35(3):e202000302. doi: 10.1590/s0102-865020200030000002. Epub 2020 May 11.
7
Developing Implantable Scaffolds to Enhance Neural Stem Cell Therapy for Post-Operative Glioblastoma.
Mol Ther. 2020 Apr 8;28(4):1056-1067. doi: 10.1016/j.ymthe.2020.02.008. Epub 2020 Feb 13.
8
Creation and Evaluation of New Porcine Model for Investigation of Treatments of Surgical Site Infection.
Tissue Eng Part C Methods. 2017 Nov;23(11):795-803. doi: 10.1089/ten.TEC.2017.0024. Epub 2017 Sep 19.

本文引用的文献

1
Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles.
Acta Biomater. 2014 May;10(5):2096-104. doi: 10.1016/j.actbio.2013.12.024. Epub 2013 Dec 21.
3
Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity.
Nanomedicine (Lond). 2012 Aug;7(8):1197-209. doi: 10.2217/nnm.12.18. Epub 2012 May 14.
4
Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety.
J Wound Care. 2011 Nov;20(11):543-9. doi: 10.12968/jowc.2011.20.11.543.
5
The bactericidal effect of silver nanoparticles.
Nanotechnology. 2005 Oct;16(10):2346-53. doi: 10.1088/0957-4484/16/10/059. Epub 2005 Aug 26.
6
The living skin equivalent as a model in vitro for ranking the toxic potential of dermal irritants.
Toxicol In Vitro. 1992 Jul;6(4):303-15. doi: 10.1016/0887-2333(92)90020-r.
7
Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro.
Environ Health Perspect. 2010 Mar;118(3):407-13. doi: 10.1289/ehp.0901398. Epub 2009 Oct 23.
8
An in vitro evaluation of the cell toxicity of honey and silver dressings.
J Wound Care. 2009 Sep;18(9):383-9. doi: 10.12968/jowc.2009.18.9.44307.
9
HaCaT keratinocytes in co-culture with Staphylococcus aureus can be protected from bacterial damage by polihexanide.
Wound Repair Regen. 2009 Sep-Oct;17(5):730-8. doi: 10.1111/j.1524-475X.2009.00536.x.
10
Human skin penetration of silver nanoparticles through intact and damaged skin.
Toxicology. 2009 Jan 8;255(1-2):33-7. doi: 10.1016/j.tox.2008.09.025. Epub 2008 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验