Suppr超能文献

进行一次良好的分割需要多少个模板?:多图谱分割中的误差分析与数据库大小的关系

How Many Templates Does It Take for a Good Segmentation?: Error Analysis in Multiatlas Segmentation as a Function of Database Size.

作者信息

Awate Suyash P, Zhu Peihong, Whitaker Ross T

出版信息

Med Image Comput Comput Assist Interv. 2012;7509:103-114. doi: 10.1007/978-3-642-33530-3_9.

Abstract

This paper proposes a novel formulation to model and analyze the statistical characteristics of some types of segmentation problems that are based on combining label maps / templates / atlases. Such segmentation-by-example approaches are quite powerful on their own for several clinical applications and they provide prior information, through spatial context, when combined with intensity-based segmentation methods. The proposed formulation models a class of segmentation problems as problems in the high-dimensional space of images. The paper presents a systematic analysis of the nonparametric estimation's (i.e. characterizing segmentation as a function of the of the multiatlas database) and shows that it has a specific analytic form involving several parameters that are fundamental to the specific segmentation problem (i.e. chosen anatomical structure, imaging modality, registration method, label-fusion algorithm, etc.). We describe how to estimate these parameters and show that several brain anatomical structures exhibit the trends determined analytically. The proposed framework also provides per-voxel confidence measures for the segmentation. We show that the segmentation error for large database sizes can be using small-sized databases. Thus, small databases can be exploited to predict the database sizes required ("how many templates") to achieve "good" segmentations having errors lower than a specified tolerance. Such cost-benefit analysis is crucial for designing and deploying multiatlas segmentation systems.

摘要

本文提出了一种新颖的公式,用于对基于标签地图/模板/图谱组合的某些类型分割问题的统计特征进行建模和分析。这种基于示例的分割方法本身对于多种临床应用相当强大,并且当与基于强度的分割方法相结合时,它们通过空间上下文提供先验信息。所提出的公式将一类分割问题建模为图像高维空间中的问题。本文对非参数估计(即将分割表征为多图谱数据库的函数)进行了系统分析,并表明它具有一种特定的解析形式,涉及几个对于特定分割问题(即所选解剖结构、成像模态、配准方法、标签融合算法等)至关重要的参数。我们描述了如何估计这些参数,并表明几种脑解剖结构呈现出通过分析确定的趋势。所提出的框架还为分割提供了逐体素的置信度度量。我们表明,对于大型数据库规模,使用小型数据库也可以实现分割误差。因此,可以利用小型数据库来预测实现误差低于指定容差的“良好”分割所需的数据库规模(“多少个模板”)。这种成本效益分析对于设计和部署多图谱分割系统至关重要。

相似文献

2
Multiatlas segmentation as nonparametric regression.多图谱分割作为非参数回归
IEEE Trans Med Imaging. 2014 Sep;33(9):1803-17. doi: 10.1109/TMI.2014.2321281. Epub 2014 Apr 30.
4
A Kalman Filtering Perspective for Multiatlas Segmentation.多图谱分割的卡尔曼滤波视角
SIAM J Imaging Sci. 2015;8(2):1007-1029. doi: 10.1137/130933423. Epub 2015 Apr 30.
6
Patch spaces and fusion strategies in patch-based label fusion.基于图块的标签融合中的补丁空间和融合策略。
Comput Med Imaging Graph. 2019 Jan;71:79-89. doi: 10.1016/j.compmedimag.2018.11.004. Epub 2018 Dec 6.

引用本文的文献

1
A Segmentation Method of Foramen Ovale Based on Multiatlas.基于多图谱的卵圆孔分割方法。
Comput Math Methods Med. 2021 Sep 20;2021:5221111. doi: 10.1155/2021/5221111. eCollection 2021.
3
Multiatlas segmentation as nonparametric regression.多图谱分割作为非参数回归
IEEE Trans Med Imaging. 2014 Sep;33(9):1803-17. doi: 10.1109/TMI.2014.2321281. Epub 2014 Apr 30.
4
Multi-atlas segmentation without registration: a supervoxel-based approach.无需配准的多图谱分割:一种基于超体素的方法。
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):535-42. doi: 10.1007/978-3-642-40760-4_67.

本文引用的文献

2
Regression-Based Label Fusion for Multi-Atlas Segmentation.基于回归的标签融合用于多图谱分割
Conf Comput Vis Pattern Recognit Workshops. 2011 Jun 20:1113-1120. doi: 10.1109/CVPR.2011.5995382.
3
Fast shape-based nearest-neighbor search for brain MRIs using hierarchical feature matching.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):484-91. doi: 10.1007/978-3-642-23629-7_59.
4
Optimal weights for multi-atlas label fusion.多图谱标签融合的最优权重
Inf Process Med Imaging. 2011;22:73-84. doi: 10.1007/978-3-642-22092-0_7.
5
A generative model for image segmentation based on label fusion.基于标签融合的图像分割生成模型。
IEEE Trans Med Imaging. 2010 Oct;29(10):1714-29. doi: 10.1109/TMI.2010.2050897. Epub 2010 Jun 17.
7
Fast and robust multi-atlas segmentation of brain magnetic resonance images.快速且稳健的脑磁共振图像多图谱分割。
Neuroimage. 2010 Feb 1;49(3):2352-65. doi: 10.1016/j.neuroimage.2009.10.026. Epub 2009 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验