Suppr超能文献

模拟癌细胞的内在异质性和生长

Modeling intrinsic heterogeneity and growth of cancer cells.

作者信息

Greene James M, Levy Doron, Fung King Leung, Souza Paloma S, Gottesman Michael M, Lavi Orit

机构信息

Department of Mathematics and Center for Scientific Computation and Mathematical Modeling (CSCAMM), University of Maryland, College Park, MD 20742, United States.

Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Room 2112, Bethesda, MD 20892, United States.

出版信息

J Theor Biol. 2015 Feb 21;367:262-277. doi: 10.1016/j.jtbi.2014.11.017. Epub 2014 Nov 29.

Abstract

Intratumoral heterogeneity has been found to be a major cause of drug resistance. Cell-to-cell variation increases as a result of cancer-related alterations, which are acquired by stochastic events and further induced by environmental signals. However, most cellular mechanisms include natural fluctuations that are closely regulated, and thus lead to asynchronization of the cells, which causes intrinsic heterogeneity in a given population. Here, we derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. These models are designed to predict variations in growth as a function of the intrinsic heterogeneity emerging from the durations of the cell-cycle and apoptosis, and also include cellular density dependencies. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations when the number of cells is large. This essential step in cancer growth modeling will allow us to revisit the mechanisms of multidrug resistance by examining spatiotemporal differences of cell growth while administering a drug among the different sub-populations in a single tumor, as well as the evolution of those mechanisms as a function of the resistance level.

摘要

肿瘤内异质性已被发现是耐药性的主要原因。由于癌症相关的改变,细胞间的变异会增加,这些改变是由随机事件获得的,并由环境信号进一步诱导。然而,大多数细胞机制包括受到严格调控的自然波动,从而导致细胞不同步,这在给定群体中造成内在异质性。在此,我们推导了两个新颖的数学模型,一个基于随机主体的模型和一个积分 - 微分方程模型,每个模型都将癌细胞的生长描述为增殖和静止状态之间的动态转变。这些模型旨在预测生长变化,将其作为细胞周期和凋亡持续时间所产生的内在异质性的函数,并且还包括细胞密度依赖性。通过研究所有参数在内在肿瘤异质性演变中所起的作用,以及群体生长对参数值的敏感性,我们表明细胞周期长度对生长动态具有最显著的影响。此外,我们证明当细胞数量很大时,基于主体的模型可以被计算效率更高的积分 - 微分方程很好地近似。癌症生长建模中的这一关键步骤将使我们能够通过研究在单一肿瘤的不同亚群中给药时细胞生长在时空上的差异,以及这些机制作为耐药水平函数的演变,重新审视多药耐药的机制。

相似文献

1
Modeling intrinsic heterogeneity and growth of cancer cells.
J Theor Biol. 2015 Feb 21;367:262-277. doi: 10.1016/j.jtbi.2014.11.017. Epub 2014 Nov 29.
2
Modeling Cancer Cell Growth Dynamics in Response to Antimitotic Drug Treatment.
Front Oncol. 2017 Aug 30;7:189. doi: 10.3389/fonc.2017.00189. eCollection 2017.
3
The impact of cell density and mutations in a model of multidrug resistance in solid tumors.
Bull Math Biol. 2014 Mar;76(3):627-53. doi: 10.1007/s11538-014-9936-8. Epub 2014 Feb 20.
5
The role of cell density and intratumoral heterogeneity in multidrug resistance.
Cancer Res. 2013 Dec 15;73(24):7168-75. doi: 10.1158/0008-5472.CAN-13-1768. Epub 2013 Oct 25.
6
Modeling the Transfer of Drug Resistance in Solid Tumors.
Bull Math Biol. 2017 Oct;79(10):2394-2412. doi: 10.1007/s11538-017-0334-x. Epub 2017 Aug 29.
7
10
Modeling the chemotherapy-induced selection of drug-resistant traits during tumor growth.
J Theor Biol. 2018 Jan 7;436:120-134. doi: 10.1016/j.jtbi.2017.10.005. Epub 2017 Oct 13.

引用本文的文献

1
Patient-specific prostate tumour growth simulation: a first step towards the digital twin.
Front Physiol. 2024 Oct 30;15:1421591. doi: 10.3389/fphys.2024.1421591. eCollection 2024.
2
Spatial interactions modulate tumor growth and immune infiltration.
NPJ Syst Biol Appl. 2024 Sep 30;10(1):106. doi: 10.1038/s41540-024-00438-1.
3
A comprehensive review of computational cell cycle models in guiding cancer treatment strategies.
NPJ Syst Biol Appl. 2024 Jul 5;10(1):71. doi: 10.1038/s41540-024-00397-7.
4
Spatial interactions modulate tumor growth and immune infiltration.
Res Sq. 2024 May 22:rs.3.rs-3962451. doi: 10.21203/rs.3.rs-3962451/v1.
5
Agent-based modeling in cancer biomedicine: applications and tools for calibration and validation.
Cancer Biol Ther. 2024 Dec 31;25(1):2344600. doi: 10.1080/15384047.2024.2344600. Epub 2024 Apr 28.
6
Spatial interactions modulate tumor growth and immune infiltration.
bioRxiv. 2024 Mar 13:2024.01.10.575036. doi: 10.1101/2024.01.10.575036.
7
Unified tumor growth mechanisms from multimodel inference and dataset integration.
PLoS Comput Biol. 2023 Jul 5;19(7):e1011215. doi: 10.1371/journal.pcbi.1011215. eCollection 2023 Jul.
8
H3K27-altered diffuse midline glioma: a paradigm shifting opportunity in direct delivery of targeted therapeutics.
Expert Opin Ther Targets. 2023 Jan;27(1):9-17. doi: 10.1080/14728222.2023.2177531. Epub 2023 Feb 12.
9
Integration of quantitative methods and mathematical approaches for the modeling of cancer cell proliferation dynamics.
Am J Physiol Cell Physiol. 2023 Feb 1;324(2):C247-C262. doi: 10.1152/ajpcell.00185.2022. Epub 2022 Dec 12.
10
Modeling the effects of EMT-immune dynamics on carcinoma disease progression.
Commun Biol. 2021 Aug 18;4(1):983. doi: 10.1038/s42003-021-02499-y.

本文引用的文献

1
Non-Darwinian dynamics in therapy-induced cancer drug resistance.
Nat Commun. 2013;4:2467. doi: 10.1038/ncomms3467.
2
Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives.
EMBO Mol Med. 2012 Aug;4(8):675-84. doi: 10.1002/emmm.201101131. Epub 2012 Jun 25.
3
The dynamics of drug resistance: a mathematical perspective.
Drug Resist Updat. 2012 Feb-Apr;15(1-2):90-7. doi: 10.1016/j.drup.2012.01.003. Epub 2012 Mar 3.
4
Robust growth of Escherichia coli.
Curr Biol. 2010 Jun 22;20(12):1099-103. doi: 10.1016/j.cub.2010.04.045. Epub 2010 May 27.
5
Mechanisms of multidrug resistance in cancer.
Methods Mol Biol. 2010;596:47-76. doi: 10.1007/978-1-60761-416-6_4.
6
Cell growth and size homeostasis in proliferating animal cells.
Science. 2009 Jul 10;325(5937):167-71. doi: 10.1126/science.1174294.
7
A dual-fluorescence high-throughput cell line system for probing multidrug resistance.
Assay Drug Dev Technol. 2009 Jun;7(3):233-49. doi: 10.1089/adt.2008.165.
8
Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis.
Nature. 2009 May 21;459(7245):428-32. doi: 10.1038/nature08012. Epub 2009 Apr 12.
9
A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth.
J Theor Biol. 2009 May 21;258(2):165-78. doi: 10.1016/j.jtbi.2009.02.008. Epub 2009 Feb 25.
10
Multiscale agent-based cancer modeling.
J Math Biol. 2009 Apr;58(4-5):545-59. doi: 10.1007/s00285-008-0211-1. Epub 2008 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验