Bian Zhaoying, Huang Jing, Ma Jianhua, Lu Lijun, Niu Shanzhou, Zeng Dong, Feng Qianjin, Chen Wufan
School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
PLoS One. 2014 Feb 27;9(2):e89282. doi: 10.1371/journal.pone.0089282. eCollection 2014.
Dynamic positron emission tomography (PET) imaging is a powerful tool that provides useful quantitative information on physiological and biochemical processes. However, low signal-to-noise ratio in short dynamic frames makes accurate kinetic parameter estimation from noisy voxel-wise time activity curves (TAC) a challenging task. To address this problem, several spatial filters have been investigated to reduce the noise of each frame with noticeable gains. These filters include the Gaussian filter, bilateral filter, and wavelet-based filter. These filters usually consider only the local properties of each frame without exploring potential kinetic information from entire frames. Thus, in this work, to improve PET parametric imaging accuracy, we present a kinetics-induced bilateral filter (KIBF) to reduce the noise of dynamic image frames by incorporating the similarity between the voxel-wise TACs using the framework of bilateral filter. The aim of the proposed KIBF algorithm is to reduce the noise in homogeneous areas while preserving the distinct kinetics of regions of interest. Experimental results on digital brain phantom and in vivo rat study with typical (18)F-FDG kinetics have shown that the present KIBF algorithm can achieve notable gains over other existing algorithms in terms of quantitative accuracy measures and visual inspection.
动态正电子发射断层扫描(PET)成像是一种强大的工具,可提供有关生理和生化过程的有用定量信息。然而,短动态帧中的低信噪比使得从有噪声的体素级时间活动曲线(TAC)准确估计动力学参数成为一项具有挑战性的任务。为了解决这个问题,人们研究了几种空间滤波器来降低每一帧的噪声,并取得了显著成效。这些滤波器包括高斯滤波器、双边滤波器和基于小波的滤波器。这些滤波器通常只考虑每一帧的局部特性,而没有从整个帧中探索潜在的动力学信息。因此,在这项工作中,为了提高PET参数成像的准确性,我们提出了一种动力学诱导双边滤波器(KIBF),通过使用双边滤波器框架结合体素级TAC之间的相似性来降低动态图像帧的噪声。所提出的KIBF算法的目的是在保留感兴趣区域独特动力学的同时降低均匀区域的噪声。在数字脑模型和具有典型(18)F-FDG动力学的体内大鼠研究中的实验结果表明,就定量准确性测量和视觉检查而言,当前的KIBF算法比其他现有算法有显著提升。