Suppr超能文献

随机连接平衡网络中的选择性和稀疏性。

Selectivity and sparseness in randomly connected balanced networks.

机构信息

Swartz Program in Theoretical Neuroscience, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America.

Swartz Program in Theoretical Neuroscience, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America ; Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel.

出版信息

PLoS One. 2014 Feb 24;9(2):e89992. doi: 10.1371/journal.pone.0089992. eCollection 2014.

Abstract

Neurons in sensory cortex show stimulus selectivity and sparse population response, even in cases where no strong functionally specific structure in connectivity can be detected. This raises the question whether selectivity and sparseness can be generated and maintained in randomly connected networks. We consider a recurrent network of excitatory and inhibitory spiking neurons with random connectivity, driven by random projections from an input layer of stimulus selective neurons. In this architecture, the stimulus-to-stimulus and neuron-to-neuron modulation of total synaptic input is weak compared to the mean input. Surprisingly, we show that in the balanced state the network can still support high stimulus selectivity and sparse population response. In the balanced state, strong synapses amplify the variation in synaptic input and recurrent inhibition cancels the mean. Functional specificity in connectivity emerges due to the inhomogeneity caused by the generative statistical rule used to build the network. We further elucidate the mechanism behind and evaluate the effects of model parameters on population sparseness and stimulus selectivity. Network response to mixtures of stimuli is investigated. It is shown that a balanced state with unselective inhibition can be achieved with densely connected input to inhibitory population. Balanced networks exhibit the "paradoxical" effect: an increase in excitatory drive to inhibition leads to decreased inhibitory population firing rate. We compare and contrast selectivity and sparseness generated by the balanced network to randomly connected unbalanced networks. Finally, we discuss our results in light of experiments.

摘要

感觉皮层中的神经元表现出刺激选择性和稀疏的群体反应,即使在连接中没有明显的功能特异性结构的情况下也是如此。这就提出了一个问题,即在随机连接的网络中,选择性和稀疏性是否可以产生和维持。我们考虑了一个由兴奋性和抑制性尖峰神经元组成的递归网络,这些神经元的连接是随机的,由具有刺激选择性的输入层的随机投影驱动。在这种架构中,与平均输入相比,刺激间和神经元间的总突触输入的调制是较弱的。令人惊讶的是,我们表明,在平衡状态下,网络仍然可以支持高刺激选择性和稀疏的群体反应。在平衡状态下,强突触会放大突触输入的变化,而递归抑制会抵消平均值。连接的功能特异性是由于用于构建网络的生成统计规则所导致的非均匀性而出现的。我们进一步阐明了背后的机制,并评估了模型参数对群体稀疏性和刺激选择性的影响。研究了网络对混合刺激的反应。结果表明,通过密集连接的输入到抑制性群体,可以实现无选择性抑制的平衡状态。平衡网络表现出“矛盾”的效果:增加对抑制的兴奋驱动会导致抑制性群体的放电率降低。我们比较和对比了平衡网络和随机连接的不平衡网络产生的选择性和稀疏性。最后,我们根据实验结果讨论了我们的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c93/3933683/0ee59c97a1d8/pone.0089992.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验