Souiai Oussema, Guerfali Fatma, Ben Miled Slimane, Brun Christine, Benkahla Alia
LIVGM + Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Avenue Jugurtha, Tunis, Tunisia.
BMC Res Notes. 2014 Mar 17;7:157. doi: 10.1186/1756-0500-7-157.
Protein-protein interaction (PPI) network analyses are highly valuable in deciphering and understanding the intricate organisation of cellular functions. Nevertheless, the majority of available protein-protein interaction networks are context-less, i.e. without any reference to the spatial, temporal or physiological conditions in which the interactions may occur. In this work, we are proposing a protocol to infer the most likely protein-protein interaction (PPI) network in human macrophages.
We integrated the PPI dataset from the Agile Protein Interaction DataAnalyzer (APID) with different meta-data to infer a contextualized macrophage-specific interactome using a combination of statistical methods. The obtained interactome is enriched in experimentally verified interactions and in proteins involved in macrophage-related biological processes (i.e. immune response activation, regulation of apoptosis). As a case study, we used the contextualized interactome to highlight the cellular processes induced upon Mycobacterium tuberculosis infection.
Our work confirms that contextualizing interactomes improves the biological significance of bioinformatic analyses. More specifically, studying such inferred network rather than focusing at the gene expression level only, is informative on the processes involved in the host response. Indeed, important immune features such as apoptosis are solely highlighted when the spotlight is on the protein interaction level.
蛋白质-蛋白质相互作用(PPI)网络分析在解读和理解细胞功能的复杂组织方面具有极高价值。然而,大多数现有的蛋白质-蛋白质相互作用网络缺乏背景信息,即没有提及相互作用可能发生的空间、时间或生理条件。在这项工作中,我们提出了一种方案来推断人类巨噬细胞中最可能的蛋白质-蛋白质相互作用(PPI)网络。
我们将来自敏捷蛋白质相互作用数据分析器(APID)的PPI数据集与不同的元数据整合,使用统计方法组合来推断一个情境化的巨噬细胞特异性相互作用组。所获得的相互作用组在实验验证的相互作用以及参与巨噬细胞相关生物学过程(即免疫反应激活、细胞凋亡调控)的蛋白质中富集。作为一个案例研究,我们使用情境化的相互作用组来突出结核分枝杆菌感染后诱导的细胞过程。
我们的工作证实,将相互作用组情境化可提高生物信息学分析的生物学意义。更具体地说,研究这样推断出的网络而非仅关注基因表达水平,对于宿主反应所涉及的过程具有参考价值。事实上,只有当聚焦于蛋白质相互作用水平时,诸如细胞凋亡等重要的免疫特征才会凸显出来。