Suppr超能文献

基于图割的多分辨率纹理建模在增强深度成像 OCT 中对脉络膜边界的分割。

Segmentation of choroidal boundary in enhanced depth imaging OCTs using a multiresolution texture based modeling in graph cuts.

机构信息

Department of Biomedical Engineering, Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan 81745, Iran.

Noor Ophthalmology Research Center, Tehran 1968653111, Iran.

出版信息

Comput Math Methods Med. 2014;2014:479268. doi: 10.1155/2014/479268. Epub 2014 Feb 11.

Abstract

The introduction of enhanced depth imaging optical coherence tomography (EDI-OCT) has provided the advantage of in vivo cross-sectional imaging of the choroid, similar to the retina, with standard commercially available spectral domain (SD) OCT machines. A texture-based algorithm is introduced in this paper for fully automatic segmentation of choroidal images obtained from an EDI system of Heidelberg 3D OCT Spectralis. Dynamic programming is utilized to determine the location of the retinal pigment epithelium (RPE). Bruch's membrane (BM) (the blood-retina barrier which separates the RPE cells of the retina from the choroid) can be segmented by searching for the pixels with the biggest gradient value below the RPE. Furthermore, a novel method is proposed to segment the choroid-sclera interface (CSI), which employs the wavelet based features to construct a Gaussian mixture model (GMM). The model is then used in a graph cut for segmentation of the choroidal boundary. The proposed algorithm is tested on 100 EDI OCTs and is compared with manual segmentation. The results showed an unsigned error of 2.48 ± 0.32 pixels for BM extraction and 9.79 ± 3.29 pixels for choroid detection. It implies significant improvement of the proposed method over other approaches like k-means and graph cut methods.

摘要

增强深度成像光学相干断层扫描(EDI-OCT)的引入提供了类似于视网膜的活体脉络膜横截面成像的优势,使用标准的商业可用的光谱域(SD)OCT 机器。本文引入了一种基于纹理的算法,用于对海德堡 3D OCT Spectralis 的 EDI 系统获得的脉络膜图像进行全自动分割。动态规划用于确定视网膜色素上皮(RPE)的位置。Bruch 膜(BM)(将视网膜的 RPE 细胞与脉络膜分开的血视网膜屏障)可以通过搜索 RPE 下方具有最大梯度值的像素来进行分割。此外,提出了一种新的方法来分割脉络膜-巩膜界面(CSI),该方法采用基于小波的特征构建高斯混合模型(GMM)。然后,该模型用于图割分割脉络膜边界。所提出的算法在 100 个 EDI-OCT 上进行了测试,并与手动分割进行了比较。结果表明,BM 提取的无符号误差为 2.48±0.32 像素,脉络膜检测的无符号误差为 9.79±3.29 像素。这意味着与 k-均值和图割方法等其他方法相比,该方法有显著的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/3942333/d490fa97672e/CMMM2014-479268.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验