Suppr超能文献

基于迁移学习的传统神经网络在光学相干断层扫描图像中脉络膜区域的分割:以糖尿病视网膜病变为重点并进行文献回顾。

Segmentation of choroidal area in optical coherence tomography images using a transfer learning-based conventional neural network: a focus on diabetic retinopathy and a literature review.

机构信息

Faculty of Mathematical Sciences and Computer, Kharazmi University, No. 50, Taleghani Avenue, Tehran, Iran.

Department of Mathematics, Faculty of Science, Arak University, Arak, Iran.

出版信息

BMC Med Imaging. 2024 Oct 18;24(1):281. doi: 10.1186/s12880-024-01459-2.

Abstract

BACKGROUND

This study aimed to evaluate the effectiveness of DeepLabv3+with Squeeze-and-Excitation (DeepLabv3+SE) architectures for segmenting the choroid in optical coherence tomography (OCT) images of patients with diabetic retinopathy.

METHODS

A total of 300 B-scans were selected from 21 patients with mild to moderate diabetic retinopathy. Six DeepLabv3+SE variants, each utilizing a different pre-trained convolutional neural network (CNN) for feature extraction, were compared. Segmentation performance was assessed using the Jaccard index, Dice score (DSC), precision, recall, and F1-score. Binarization and Bland-Altman analysis were employed to evaluate the agreement between automated and manual measurements of choroidal area, luminal area (LA), and Choroidal Vascularity Index (CVI).

RESULTS

DeepLabv3+SE with EfficientNetB0 achieved the highest segmentation performance, with a Jaccard index of 95.47, DSC of 98.29, precision of 98.80, recall of 97.41, and F1-score of 98.10 on the validation set. Bland-Altman analysis indicated good agreement between automated and manual measurements of LA and CVI.

CONCLUSIONS

DeepLabv3+SE with EfficientNetB0 demonstrates promise for accurate choroid segmentation in OCT images. This approach offers a potential solution for automated CVI calculation in diabetic retinopathy patients. Further evaluation of the proposed method on a larger and more diverse dataset can strengthen its generalizability and clinical applicability.

摘要

背景

本研究旨在评估 DeepLabv3+与挤压激励(DeepLabv3+SE)架构在糖尿病视网膜病变患者光学相干断层扫描(OCT)图像中分割脉络膜的有效性。

方法

从 21 名轻度至中度糖尿病视网膜病变患者中选择了 300 个 B 扫描。比较了 6 种 DeepLabv3+SE 变体,每种变体都使用不同的预训练卷积神经网络(CNN)进行特征提取。使用 Jaccard 指数、Dice 得分(DSC)、精度、召回率和 F1 分数评估分割性能。采用二值化和 Bland-Altman 分析评估自动和手动测量脉络膜面积、管腔面积(LA)和脉络膜血管指数(CVI)的一致性。

结果

在验证集上,使用 EfficientNetB0 的 DeepLabv3+SE 实现了最高的分割性能,Jaccard 指数为 95.47,DSC 为 98.29,精度为 98.80,召回率为 97.41,F1 分数为 98.10。Bland-Altman 分析表明,LA 和 CVI 的自动和手动测量之间具有良好的一致性。

结论

使用 EfficientNetB0 的 DeepLabv3+SE 显示出在 OCT 图像中准确分割脉络膜的潜力。这种方法为糖尿病视网膜病变患者的自动 CVI 计算提供了一种潜在的解决方案。在更大、更多样化的数据集上进一步评估该方法可以增强其泛化能力和临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af26/11488256/cff7e314011e/12880_2024_1459_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验